BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34746624)

  • 21. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.
    Zhao T; Cao M; Niu H; Zuo XN; Evans A; He Y; Dong Q; Shu N
    Hum Brain Mapp; 2015 Oct; 36(10):3777-92. PubMed ID: 26173024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.
    Kerepesi C; Varga B; Szalkai B; Grolmusz V
    Neurosci Lett; 2018 Apr; 673():51-55. PubMed ID: 29496609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abnormal structural networks characterize major depressive disorder: a connectome analysis.
    Korgaonkar MS; Fornito A; Williams LM; Grieve SM
    Biol Psychiatry; 2014 Oct; 76(7):567-74. PubMed ID: 24690111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring graphical strength within the connectome: A neuroanatomic, parcellation-based study.
    Jones RG; Briggs RG; Conner AK; Bonney PA; Fletcher LR; Ahsan SA; Chakraborty AR; Nix CE; Jacobs CC; Lack AM; Griffin DT; Teo C; Sughrue ME
    J Neurol Sci; 2020 Jan; 408():116529. PubMed ID: 31710969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks.
    Khalilian M; Kazemi K; Fouladivanda M; Makki M; Helfroush MS; Aarabi A
    Diagnostics (Basel); 2021 May; 11(6):. PubMed ID: 34072192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Brain Parcellation on the Characterization of Topological Deterioration in Alzheimer's Disease.
    Wu Z; Xu D; Potter T; Zhang Y;
    Front Aging Neurosci; 2019; 11():113. PubMed ID: 31164815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consistency of Graph Theoretical Measurements of Alzheimer's Disease Fiber Density Connectomes Across Multiple Parcellation Scales.
    Xu F; Garai S; Duong-Tran D; Saykin AJ; Zhao Y; Shen L;
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2022 Dec; 2022():1323-1328. PubMed ID: 37041884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Young High-Functioning Autism Individuals Based on Functional Connectome Using Graph Isomorphism Network: A Pilot Study.
    Yang S; Jin D; Liu J; He Y
    Brain Sci; 2022 Jul; 12(7):. PubMed ID: 35884690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disrupted brain network topology in pediatric posttraumatic stress disorder: A resting-state fMRI study.
    Suo X; Lei D; Li K; Chen F; Li F; Li L; Huang X; Lui S; Li L; Kemp GJ; Gong Q
    Hum Brain Mapp; 2015 Sep; 36(9):3677-86. PubMed ID: 26096541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    PLoS One; 2016; 11(6):e0158680. PubMed ID: 27362431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.
    Bouritsas G; Frasca F; Zafeiriou S; Bronstein MM
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):657-668. PubMed ID: 35201983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns.
    Sa de Almeida J; Meskaldji DE; Loukas S; Lordier L; Gui L; Lazeyras F; Hüppi PS
    Neuroimage; 2021 Jan; 225():117440. PubMed ID: 33039621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Test-retest reliability of computational network measurements derived from the structural connectome of the human brain.
    Owen JP; Ziv E; Bukshpun P; Pojman N; Wakahiro M; Berman JI; Roberts TP; Friedman EJ; Sherr EH; Mukherjee P
    Brain Connect; 2013; 3(2):160-76. PubMed ID: 23350832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topology-guided cyclic brain connectivity generation using geometric deep learning.
    Sserwadda A; Rekik I
    J Neurosci Methods; 2021 Apr; 353():108988. PubMed ID: 33160020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Budapest Reference Connectome Server v2.0.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    Neurosci Lett; 2015 May; 595():60-2. PubMed ID: 25862487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross Atlas Remapping via Optimal Transport (CAROT): Creating connectomes for different atlases when raw data is not available.
    Dadashkarimi J; Karbasi A; Liang Q; Rosenblatt M; Noble S; Foster M; Rodriguez R; Adkinson B; Ye J; Sun H; Camp C; Farruggia M; Tejavibulya L; Dai W; Jiang R; Pollatou A; Scheinost D
    Med Image Anal; 2023 Aug; 88():102864. PubMed ID: 37352650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Brain Network: What is the Effect of LiFE Optimization of Whole Brain Tractography?
    Qi S; Meesters S; Nicolay K; Ter Haar Romeny BM; Ossenblok P
    Front Comput Neurosci; 2016; 10():12. PubMed ID: 26909034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subject-Specific Structural Parcellations Based on Randomized AB-divergences.
    Honnorat N; Parker D; Tunç B; Davatzikos C; Verma R
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():407-415. PubMed ID: 29075681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The braingraph.org database of high resolution structural connectomes and the brain graph tools.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    Cogn Neurodyn; 2017 Oct; 11(5):483-486. PubMed ID: 29067135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.