These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34746853)

  • 61. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CRISPR-Cas9-Mediated Genome Editing in the Filamentous Ascomycete Huntiella omanensis.
    Wilson AM; Wingfield BD
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32597846
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protocol for generating monoclonal CRISPR-Cas9-mediated knockout cell lines using RNPs and lipofection in HNSCC cells.
    Geyer F; Geyer M; Klapproth S; Wolff KD; Nieberler M
    STAR Protoc; 2023 Sep; 4(3):102366. PubMed ID: 37421616
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.
    Hindriksen S; Bramer AJ; Truong MA; Vromans MJM; Post JB; Verlaan-Klink I; Snippert HJ; Lens SMA; Hadders MA
    PLoS One; 2017; 12(6):e0179514. PubMed ID: 28640891
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simple Protocol for Generating and Genotyping Genome-Edited Mice With CRISPR-Cas9 Reagents.
    Fernández A; Morín M; Muñoz-Santos D; Josa S; Montero A; Rubio-Fernández M; Cantero M; Fernández J; Del Hierro MJ; Castrillo M; Moreno-Pelayo MÁ; Montoliu L
    Curr Protoc Mouse Biol; 2020 Mar; 10(1):e69. PubMed ID: 32159922
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Profiling Genome-Wide Specificity of CRISPR-Cas9 Using Digenome-Seq.
    Kim D; Kim JS
    Methods Mol Biol; 2021; 2162():233-242. PubMed ID: 32926386
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced Genome Editing Tools For Multi-Gene Deletion Knock-Out Approaches Using Paired CRISPR sgRNAs in CHO Cells.
    Schmieder V; Bydlinski N; Strasser R; Baumann M; Kildegaard HF; Jadhav V; Borth N
    Biotechnol J; 2018 Mar; 13(3):e1700211. PubMed ID: 28976642
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Delivery of CRISPR/Cas9 for therapeutic genome editing.
    Xu X; Wan T; Xin H; Li D; Pan H; Wu J; Ping Y
    J Gene Med; 2019 Jul; 21(7):e3107. PubMed ID: 31237055
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acute gene inactivation in the adult mouse liver using the CRISPR-Cas9 technology.
    Wang X; Xu BL; Chen XW
    STAR Protoc; 2021 Sep; 2(3):100611. PubMed ID: 34189476
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Screening of CRISPR-Cas9-generated point mutant mice using MiSeq and locked nucleic acid probe PCR.
    Vasu K; Fox PL
    STAR Protoc; 2021 Dec; 2(4):100785. PubMed ID: 34585153
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vitro CRISPR-Cas9-mediated efficient Ad5 vector modification.
    Tang L; Gong M; Zhang P
    Biochem Biophys Res Commun; 2016 May; 474(2):395-399. PubMed ID: 27125457
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing.
    Aquino-Jarquin G
    Mol Genet Metab; 2021; 134(1-2):77-86. PubMed ID: 34391646
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fluorescent tagging of endogenous proteins with CRISPR/Cas9 in primary mouse neural stem cells.
    Morrow CS; Porter TJ; Moore DL
    STAR Protoc; 2021 Sep; 2(3):100744. PubMed ID: 34430917
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.