BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34746983)

  • 1. Transcriptome sequencing and global analysis of blue light-responsive genes provide clues for high carotenoid yields in Blakeslea trispora.
    Ge X; Li R; Zhang X; Zhao J; Zhang Y; Xin Q
    Int Microbiol; 2022 May; 25(2):325-338. PubMed ID: 34746983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Negative Regulator of Carotenogenesis in
    Luo W; Gong Z; Li N; Zhao Y; Zhang H; Yang X; Liu Y; Rao Z; Yu X
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blakeslea trispora Photoreceptors: Identification and Functional Analysis.
    Luo W; Xue C; Zhao Y; Zhang H; Rao Z; Yu X
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033952
    [No Abstract]   [Full Text] [Related]  

  • 4. Multilevel Regulation of Carotenoid Synthesis by Light and Active Oxygen in
    Luo W; Wang Y; Yang P; Qu Y; Yu X
    J Agric Food Chem; 2021 Sep; 69(37):10974-10988. PubMed ID: 34510898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR.
    Schmidt AD; Heinekamp T; Matuschek M; Liebmann B; Bollschweiler C; Brakhage AA
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):549-55. PubMed ID: 15744487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light irradiation changes the regulation pattern of BtCrgA on carotenogenesis in Blakeslea trispora.
    Yang J; Zeng M; Wu H; Han Z; Du ZR; Yu X; Luo W
    FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 38200712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora.
    Quiles-Rosillo MD; Ruiz-Vázquez RM; Torres-Martínez S; Garre V
    Fungal Genet Biol; 2005 Feb; 42(2):141-53. PubMed ID: 15670712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blakeslea trispora genes for carotene biosynthesis.
    Rodríguez-Sáiz M; Paz B; De La Fuente JL; López-Nieto MJ; Cabri W; Barredo JL
    Appl Environ Microbiol; 2004 Sep; 70(9):5589-94. PubMed ID: 15345447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction.
    Deng Y; Yao J; Wang X; Guo H; Duan D
    PLoS One; 2012; 7(6):e39704. PubMed ID: 22761876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved β-carotene biosynthesis and gene transcription in Blakeslea trispora with arachidonic acid.
    Hu X; Sun J; Yuan Q
    Biotechnol Lett; 2012 Nov; 34(11):2107-11. PubMed ID: 22829287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora.
    Wang Y; Chen X; Hong X; Du S; Liu C; Gong W; Chen D
    J Biosci Bioeng; 2016 Nov; 122(5):570-576. PubMed ID: 27238833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protoplast fusion between Blakeslea trispora 14,271 (+) and 14,272 (-) enhanced the yield of lycopene and β-carotene.
    Wang Y; Wang Y; Chen X; Gao N; Wu Y; Zhang H
    World J Microbiol Biotechnol; 2021 Mar; 37(4):58. PubMed ID: 33655368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early and late trisporoids differentially regulate β-carotene production and gene transcript Levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo.
    Sahadevan Y; Richter-Fecken M; Kaerger K; Voigt K; Boland W
    Appl Environ Microbiol; 2013 Dec; 79(23):7466-75. PubMed ID: 24056470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content.
    Matselyukh BP; Matselyukh DY; Golembiovska SL; Polishchuk LV; Lavrinchuk VY
    Mikrobiol Z; 2013; 75(6):10-6. PubMed ID: 24450179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure prediction and function characterization of WC-2 proteins in Blakeslea trispora.
    Ge X; Yuan Y; Li R; Zhang X; Xin Q
    Int Microbiol; 2021 Aug; 24(3):427-439. PubMed ID: 33973112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid synthesis and phytoene synthase activity during mating of Blakeslea trispora.
    Breitenbach J; Fraser PD; Sandmann G
    Phytochemistry; 2012 Apr; 76():40-5. PubMed ID: 22281381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress response of Blakeslea trispora induced by H₂O₂ during β-carotene biosynthesis.
    Wang HB; Luo J; Huang XY; Lu MB; Yu LJ
    J Ind Microbiol Biotechnol; 2014 Mar; 41(3):555-61. PubMed ID: 24352432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SR5AL serves as a key regulatory gene in lycopene biosynthesis by Blakeslea trispora.
    Wang Q; Chen Y; Yang Q; Zhao J; Feng L; Wang M
    Microb Cell Fact; 2022 Jun; 21(1):126. PubMed ID: 35752808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agro-food wastes utilization by Blakeslea trispora for carotenoids production.
    Papaioannou EH; Liakopoulou-Kyriakides M
    Acta Biochim Pol; 2012; 59(1):151-3. PubMed ID: 22428133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Zygote formation in Blakeslea trispora: morphological peculiarities and relationship with carotenoid synthesis].
    Tereshina VM; Memorskaia AS; Feofilova EP
    Mikrobiologiia; 2003; 72(4):503-9. PubMed ID: 14526541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.