BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34747173)

  • 1. Biosynthesis of a Therapeutically Important Nicotinamide Mononucleotide through a Phosphoribosyl Pyrophosphate Synthetase 1 and 2 Engineered Strain of
    Maharjan A; Singhvi M; Kim BS
    ACS Synth Biol; 2021 Nov; 10(11):3055-3065. PubMed ID: 34747173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-nicotinamide mononucleotide (NMN) production in Escherichia coli.
    Marinescu GC; Popescu RG; Stoian G; Dinischiotu A
    Sci Rep; 2018 Aug; 8(1):12278. PubMed ID: 30115969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.
    Shoji S; Yamaji T; Makino H; Ishii J; Kondo A
    Metab Eng; 2021 May; 65():167-177. PubMed ID: 33220420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide.
    Liu Y; Yasawong M; Yu B
    Microb Biotechnol; 2021 Nov; 14(6):2581-2591. PubMed ID: 34310854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Nicotinamide Mononucleotide from Xylose via Coupling Engineered Escherichia coli and a Biocatalytic Cascade.
    Ngivprom U; Lasin P; Khunnonkwao P; Worakaensai S; Jantama K; Kamkaew A; Lai RY
    Chembiochem; 2022 Jun; 23(11):e202200071. PubMed ID: 35362650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Engineering of
    Huang Z; Li N; Yu S; Zhang W; Zhang T; Zhou J
    ACS Synth Biol; 2022 Sep; 11(9):2979-2988. PubMed ID: 35977419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor.
    Black WB; Aspacio D; Bever D; King E; Zhang L; Li H
    Microb Cell Fact; 2020 Jul; 19(1):150. PubMed ID: 32718347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological synthesis of nicotinamide mononucleotide.
    Shen Q; Zhang SJ; Xue YZ; Peng F; Cheng DY; Xue YP; Zheng YG
    Biotechnol Lett; 2021 Dec; 43(12):2199-2208. PubMed ID: 34626279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of an enzymatic cascade synthesis of nicotinamide mononucleotide via protein engineering and reaction-process reinforcement.
    Peng F; Hong J; Cui J; An YN; Guo Q; Shen Q; Cheng F; Xue YP; Zheng YG
    Biotechnol J; 2024 Feb; 19(2):e2300748. PubMed ID: 38403401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.
    Wang X; Zhou YJ; Wang L; Liu W; Liu Y; Peng C; Zhao ZK
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma.
    Hara N; Yamada K; Shibata T; Osago H; Tsuchiya M
    PLoS One; 2011; 6(8):e22781. PubMed ID: 21826208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside.
    Mateuszuk Ł; Campagna R; Kutryb-Zając B; Kuś K; Słominska EM; Smolenski RT; Chlopicki S
    Biochem Pharmacol; 2020 Aug; 178():114019. PubMed ID: 32389638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in physiological activities and synthesis of β-nicotinamide mononucleotide].
    Chen Y; Zhou C; Huang J; Tao Y; Ke C; Yang X
    Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):516-536. PubMed ID: 36847087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A holistic approach for process intensification of nicotinamide mononucleotide production via high cell density cultivation under exponential feeding strategy.
    Kafle SR; Kushwaha A; Goswami L; Maharjan A; Kim BS
    Bioresour Technol; 2023 Dec; 390():129911. PubMed ID: 37871744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide mononucleotide production by fructophilic lactic acid bacteria.
    Sugiyama K; Iijima K; Yoshino M; Dohra H; Tokimoto Y; Nishikawa K; Idogaki H; Yoshida N
    Sci Rep; 2021 Apr; 11(1):7662. PubMed ID: 33828213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants.
    Hove-Jensen B
    J Bacteriol; 1996 Feb; 178(3):714-22. PubMed ID: 8550505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial multi-enzyme cascade biocatalysis for biomanufacturing of nicotinamide mononucleotide from starch and nicotinamide in one-pot.
    Li Q; Meng D; You C
    Enzyme Microb Technol; 2023 Jan; 162():110122. PubMed ID: 36103798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the biosynthesis of nicotinamide mononucleotide in Lactococcus lactis by heterologous expression of FtnadE.
    Kong LH; Liu TY; Yao QS; Zhang XH; Xu WN; Qin JY
    J Sci Food Agric; 2023 Jan; 103(1):450-456. PubMed ID: 36205212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo.
    Formentini L; Moroni F; Chiarugi A
    Biochem Pharmacol; 2009 May; 77(10):1612-20. PubMed ID: 19426698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nicotinamide phosphoribosyltransferase-GAPDH interaction sustains the stress-induced NMN/NAD
    Grolla AA; Miggiano R; Di Marino D; Bianchi M; Gori A; Orsomando G; Gaudino F; Galli U; Del Grosso E; Mazzola F; Angeletti C; Guarneri M; Torretta S; Calabrò M; Boumya S; Fan X; Colombo G; Travelli C; Rocchio F; Aronica E; Wohlschlegel JA; Deaglio S; Rizzi M; Genazzani AA; Garavaglia S
    J Biol Chem; 2020 Mar; 295(11):3635-3651. PubMed ID: 31988240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.