These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 34747351)
21. Virtual Reality Games as an Adjunct in Improving Upper Limb Function and General Health among Stroke Survivors. Ahmad MA; Singh DKA; Mohd Nordin NA; Hooi Nee K; Ibrahim N Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31888293 [TBL] [Abstract][Full Text] [Related]
22. Virtual reality for stroke rehabilitation. Laver KE; George S; Thomas S; Deutsch JE; Crotty M Cochrane Database Syst Rev; 2011 Sep; (9):CD008349. PubMed ID: 21901720 [TBL] [Abstract][Full Text] [Related]
23. The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Iruthayarajah J; McIntyre A; Cotoi A; Macaluso S; Teasell R Top Stroke Rehabil; 2017 Jan; 24(1):68-79. PubMed ID: 27309680 [TBL] [Abstract][Full Text] [Related]
24. Game-Based Virtual Reality Interventions to Improve Upper Limb Motor Function and Quality of Life After Stroke: Systematic Review and Meta-analysis. Domínguez-Téllez P; Moral-Muñoz JA; Salazar A; Casado-Fernández E; Lucena-Antón D Games Health J; 2020 Feb; 9(1):1-10. PubMed ID: 32027185 [TBL] [Abstract][Full Text] [Related]
25. Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study. Park DS; Lee DG; Lee K; Lee G J Stroke Cerebrovasc Dis; 2017 Oct; 26(10):2313-2319. PubMed ID: 28606661 [TBL] [Abstract][Full Text] [Related]
26. Virtual Reality Training Using Nintendo Wii Games for Patients With Stroke: Randomized Controlled Trial. Anwar N; Karimi H; Ahmad A; Gilani SA; Khalid K; Aslam AS; Hanif A JMIR Serious Games; 2022 Jun; 10(2):e29830. PubMed ID: 35699989 [TBL] [Abstract][Full Text] [Related]
27. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855 [TBL] [Abstract][Full Text] [Related]
28. Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. de Rooij IJM; van de Port IGL; Visser-Meily JMA; Meijer JG Trials; 2019 Jan; 20(1):89. PubMed ID: 30696491 [TBL] [Abstract][Full Text] [Related]
29. Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials. Mekbib DB; Han J; Zhang L; Fang S; Jiang H; Zhu J; Roe AW; Xu D Brain Inj; 2020 Mar; 34(4):456-465. PubMed ID: 32064964 [No Abstract] [Full Text] [Related]
30. Impact of Virtual Reality-Based Therapies on Cognition and Mental Health of Stroke Patients: Systematic Review and Meta-analysis. Zhang Q; Fu Y; Lu Y; Zhang Y; Huang Q; Yang Y; Zhang K; Li M J Med Internet Res; 2021 Nov; 23(11):e31007. PubMed ID: 34787571 [TBL] [Abstract][Full Text] [Related]
31. Virtual reality interventions to enhance upper limb motor improvement after a stroke: commonly used types of platform and outcomes. Subramanian SK; Cross MK; Hirschhauser CS Disabil Rehabil Assist Technol; 2022 Jan; 17(1):107-115. PubMed ID: 32448005 [TBL] [Abstract][Full Text] [Related]
32. Effectiveness of Virtual Reality- and Gaming-Based Interventions for Upper Extremity Rehabilitation Poststroke: A Meta-analysis. Karamians R; Proffitt R; Kline D; Gauthier LV Arch Phys Med Rehabil; 2020 May; 101(5):885-896. PubMed ID: 31821799 [TBL] [Abstract][Full Text] [Related]
33. Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Aşkın A; Atar E; Koçyiğit H; Tosun A Somatosens Mot Res; 2018 Mar; 35(1):25-32. PubMed ID: 29529919 [TBL] [Abstract][Full Text] [Related]
34. Feasibility of training using full immersion virtual reality video game in young stroke survivor: A case report. Park S; Lee D; Hong S; Cho K; Lee G NeuroRehabilitation; 2021; 48(1):1-8. PubMed ID: 33361614 [TBL] [Abstract][Full Text] [Related]
35. Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke: a randomized controlled trial. Long Y; Ouyang RG; Zhang JQ J Neuroeng Rehabil; 2020 Nov; 17(1):150. PubMed ID: 33187532 [TBL] [Abstract][Full Text] [Related]
36. Effects of virtual reality-based telerehabilitation for stroke patients: A systematic review and meta-analysis of randomized controlled trials. Hao J; Pu Y; Chen Z; Siu KC J Stroke Cerebrovasc Dis; 2023 Mar; 32(3):106960. PubMed ID: 36586244 [TBL] [Abstract][Full Text] [Related]
37. Computer-Mediated Therapies for Stroke Rehabilitation: A Systematic Review and Meta-Analysis. Mugisha S; Job M; Zoppi M; Testa M; Molfino R J Stroke Cerebrovasc Dis; 2022 Jun; 31(6):106454. PubMed ID: 35378466 [TBL] [Abstract][Full Text] [Related]
38. Evaluation instruments for physical therapy using virtual reality in stroke patients: a systematic review. Felipe FA; de Carvalho FO; Silva ÉR; Santos NGL; Fontes PA; de Almeida AS; Garção DC; Nunes PS; de Souza Araújo AA Physiotherapy; 2020 Mar; 106():194-210. PubMed ID: 31542173 [TBL] [Abstract][Full Text] [Related]
39. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: a systematic review and meta-analysis. Truijen S; Abdullahi A; Bijsterbosch D; van Zoest E; Conijn M; Wang Y; Struyf N; Saeys W Neurol Sci; 2022 May; 43(5):2995-3006. PubMed ID: 35175439 [TBL] [Abstract][Full Text] [Related]
40. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. Chen YH; Chen CL; Huang YZ; Chen HC; Chen CY; Wu CY; Lin KC J Neuroeng Rehabil; 2021 May; 18(1):91. PubMed ID: 34059090 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]