These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Statics of polymer droplets on deformable surfaces. Léonforte F; Müller M J Chem Phys; 2011 Dec; 135(21):214703. PubMed ID: 22149807 [TBL] [Abstract][Full Text] [Related]
8. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces. Lee JB; Derome D; Guyer R; Carmeliet J Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317 [TBL] [Abstract][Full Text] [Related]
9. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
10. Contact line relaxation of sessile drops on PDMS surfaces: A methodological perspective. Ibáñez-Ibáñez PF; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez MA; Rodríguez-Valverde MA J Colloid Interface Sci; 2021 May; 589():166-172. PubMed ID: 33460848 [TBL] [Abstract][Full Text] [Related]
12. Soft Wetting: Droplet Receding Contact Angles on Soft Superhydrophobic Surfaces. Jiang Y; Xu Z; Li B; Li J; Guan D Langmuir; 2023 Oct; 39(43):15401-15408. PubMed ID: 37857566 [TBL] [Abstract][Full Text] [Related]
13. Viscous droplet impingement on soft substrates. Lin M; Vo Q; Mitra S; Tran T Soft Matter; 2022 Jul; 18(29):5474-5482. PubMed ID: 35833825 [TBL] [Abstract][Full Text] [Related]
14. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen. Lee JB; Dos Santos S; Antonini C Langmuir; 2016 Aug; 32(32):8245-54. PubMed ID: 27452333 [TBL] [Abstract][Full Text] [Related]
15. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Chen L; Bonaccurso E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736 [TBL] [Abstract][Full Text] [Related]
16. Elasto-electro-capillarity: drop equilibrium on a charged, elastic solid. Jing H; Sinha S; Das S Soft Matter; 2017 Jan; 13(3):554-566. PubMed ID: 27935004 [TBL] [Abstract][Full Text] [Related]
17. A molecular-dynamics study of sliding liquid nanodrops: Dynamic contact angles and the pearling transition. Fernández-Toledano JC; Blake TD; Limat L; De Coninck J J Colloid Interface Sci; 2019 Jul; 548():66-76. PubMed ID: 30986712 [TBL] [Abstract][Full Text] [Related]
18. Coalescence and noncoalescence of sessile drops: impact of surface forces. Karpitschka S; Hanske C; Fery A; Riegler H Langmuir; 2014 Jun; 30(23):6826-30. PubMed ID: 24841430 [TBL] [Abstract][Full Text] [Related]
19. Liquid drops attract or repel by the inverted Cheerios effect. Karpitschka S; Pandey A; Lubbers LA; Weijs JH; Botto L; Das S; Andreotti B; Snoeijer JH Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7403-7. PubMed ID: 27298348 [TBL] [Abstract][Full Text] [Related]
20. Droplets move over viscoelastic substrates by surfing a ridge. Karpitschka S; Das S; van Gorcum M; Perrin H; Andreotti B; Snoeijer JH Nat Commun; 2015 Aug; 6():7891. PubMed ID: 26238436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]