These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 34747466)
1. Pol3Base: a resource for decoding the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. Cai L; Xuan J; Lin Q; Wang J; Liu S; Xie F; Zheng L; Li B; Qu L; Yang J Nucleic Acids Res; 2022 Jan; 50(D1):D279-D286. PubMed ID: 34747466 [TBL] [Abstract][Full Text] [Related]
2. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Zhou KR; Liu S; Sun WJ; Zheng LL; Zhou H; Yang JH; Qu LH Nucleic Acids Res; 2017 Jan; 45(D1):D43-D50. PubMed ID: 27924033 [TBL] [Abstract][Full Text] [Related]
3. deepBase v3.0: expression atlas and interactive analysis of ncRNAs from thousands of deep-sequencing data. Xie F; Liu S; Wang J; Xuan J; Zhang X; Qu L; Zheng L; Yang J Nucleic Acids Res; 2021 Jan; 49(D1):D877-D883. PubMed ID: 33175131 [TBL] [Abstract][Full Text] [Related]
4. Lytic Infection with Murine Gammaherpesvirus 68 Activates Host and Viral RNA Polymerase III Promoters and Enhances Noncoding RNA Expression. Knox AN; Mueller A; Medina EM; Clambey ET; van Dyk LF J Virol; 2021 Jun; 95(14):e0007921. PubMed ID: 33910955 [TBL] [Abstract][Full Text] [Related]
5. ChIPBase v3.0: the encyclopedia of transcriptional regulations of non-coding RNAs and protein-coding genes. Huang J; Zheng W; Zhang P; Lin Q; Chen Z; Xuan J; Liu C; Wu D; Huang Q; Zheng L; Liu S; Zhou K; Qu L; Li B; Yang J Nucleic Acids Res; 2023 Jan; 51(D1):D46-D56. PubMed ID: 36399495 [TBL] [Abstract][Full Text] [Related]
6. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Li JH; Liu S; Zhou H; Qu LH; Yang JH Nucleic Acids Res; 2014 Jan; 42(Database issue):D92-7. PubMed ID: 24297251 [TBL] [Abstract][Full Text] [Related]
7. tsRFun: a comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data. Wang JH; Chen WX; Mei SQ; Yang YD; Yang JH; Qu LH; Zheng LL Nucleic Acids Res; 2022 Jan; 50(D1):D421-D431. PubMed ID: 34755848 [TBL] [Abstract][Full Text] [Related]
8. RNA polymerase III transcription as a disease factor. Yeganeh M; Hernandez N Genes Dev; 2020 Jul; 34(13-14):865-882. PubMed ID: 32611613 [TBL] [Abstract][Full Text] [Related]
9. Single-cell RNA sequencing of nc886, a non-coding RNA transcribed by RNA polymerase III, with a primer spike-in strategy. Shin GJ; Choi BH; Eum HH; Jo A; Kim N; Kang H; Hong D; Jang JJ; Lee HH; Lee YS; Lee YS; Lee HO PLoS One; 2024; 19(8):e0301562. PubMed ID: 39190696 [TBL] [Abstract][Full Text] [Related]
10. nc886, an RNA Polymerase III-Transcribed Noncoding RNA Whose Expression Is Dynamic and Regulated by Intriguing Mechanisms. Lee YS; Lee YS Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239877 [TBL] [Abstract][Full Text] [Related]
11. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery. Willis IM; Moir RD Annu Rev Biochem; 2018 Jun; 87():75-100. PubMed ID: 29328783 [TBL] [Abstract][Full Text] [Related]
12. Signals from noncoding RNAs: unconventional roles for conventional pol III transcripts. Hu S; Wu J; Chen L; Shan G Int J Biochem Cell Biol; 2012 Nov; 44(11):1847-51. PubMed ID: 22819850 [TBL] [Abstract][Full Text] [Related]
13. Alcohol induces RNA polymerase III-dependent transcription through c-Jun by co-regulating TATA-binding protein (TBP) and Brf1 expression. Zhong S; Machida K; Tsukamoto H; Johnson DL J Biol Chem; 2011 Jan; 286(4):2393-401. PubMed ID: 21106530 [TBL] [Abstract][Full Text] [Related]
14. Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Carrière L; Graziani S; Alibert O; Ghavi-Helm Y; Boussouar F; Humbertclaude H; Jounier S; Aude JC; Keime C; Murvai J; Foglio M; Gut M; Gut I; Lathrop M; Soutourina J; Gérard M; Werner M Nucleic Acids Res; 2012 Jan; 40(1):270-83. PubMed ID: 21911356 [TBL] [Abstract][Full Text] [Related]
15. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. Zhou S; Van Bortle K Wiley Interdiscip Rev RNA; 2023; 14(5):e1782. PubMed ID: 36754845 [TBL] [Abstract][Full Text] [Related]
16. A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes. Kumar Y; Bhargava P BMC Genomics; 2013 Jun; 14():402. PubMed ID: 23767421 [TBL] [Abstract][Full Text] [Related]
18. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Marck C; Kachouri-Lafond R; Lafontaine I; Westhof E; Dujon B; Grosjean H Nucleic Acids Res; 2006; 34(6):1816-35. PubMed ID: 16600899 [TBL] [Abstract][Full Text] [Related]
19. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Hamada M; Huang Y; Lowe TM; Maraia RJ Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871 [TBL] [Abstract][Full Text] [Related]
20. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements. Durrieu-Gaillard S; Dumay-Odelot H; Boldina G; Tourasse NJ; Allard D; André F; Macari F; Choquet A; Lagarde P; Drutel G; Leste-Lasserre T; Petitet M; Lesluyes T; Lartigue-Faustin L; Dupuy JW; Chibon F; Roeder RG; Joubert D; Vagner S; Teichmann M Cell Cycle; 2018; 17(5):605-615. PubMed ID: 29171785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]