BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34747548)

  • 1. Temperature impact on the influence of penguin-derived nutrients and mosses on non-native grass in a simulated polar ecosystem.
    Bokhorst S; Convey P; van Logtestijn R; Aerts R
    Glob Chang Biol; 2022 Feb; 28(3):816-828. PubMed ID: 34747548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Herbivore impacts to the moss layer determine tundra ecosystem response to grazing and warming.
    Gornall JL; Woodin SJ; Jónsdóttir IS; Van der Wal R
    Oecologia; 2009 Oct; 161(4):747-58. PubMed ID: 19701775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen Inputs by Marine Vertebrates Drive Abundance and Richness in Antarctic Terrestrial Ecosystems.
    Bokhorst S; Convey P; Aerts R
    Curr Biol; 2019 May; 29(10):1721-1727.e3. PubMed ID: 31080085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invited review: climate change impacts in polar regions: lessons from Antarctic moss bank archives.
    Royles J; Griffiths H
    Glob Chang Biol; 2015 Mar; 21(3):1041-57. PubMed ID: 25336089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mosses and the struggle for light in a nitrogen-polluted world.
    van der Wal R; Pearce IS; Brooker RW
    Oecologia; 2005 Jan; 142(2):159-68. PubMed ID: 15490246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arctic mosses govern below-ground environment and ecosystem processes.
    Gornall JL; Jónsdóttir IS; Woodin SJ; Van der Wal R
    Oecologia; 2007 Oct; 153(4):931-41. PubMed ID: 17618466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of δ
    Wang X; Liu X; Fang Y; Jin J; Wu L; Fu P; Huang H; Zhang H; Emslie SD
    Sci Total Environ; 2020 Mar; 709():134496. PubMed ID: 31874340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-specific effects of passive warming in an Antarctic moss system.
    Prather HM; Casanova-Katny A; Clements AF; Chmielewski MW; Balkan MA; Shortlidge EE; Rosenstiel TN; Eppley SM
    R Soc Open Sci; 2019 Nov; 6(11):190744. PubMed ID: 31827828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic.
    Bokhorst S; Huiskes A; Convey P; Aerts R
    BMC Ecol; 2007 Dec; 7():15. PubMed ID: 18093288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread Biological Response to Rapid Warming on the Antarctic Peninsula.
    Amesbury MJ; Roland TP; Royles J; Hodgson DA; Convey P; Griffiths H; Charman DJ
    Curr Biol; 2017 Jun; 27(11):1616-1622.e2. PubMed ID: 28528907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum.
    Shortlidge EE; Eppley SM; Kohler H; Rosenstiel TN; Zúñiga GE; Casanova-Katny A
    Ann Bot; 2017 Jan; 119(1):27-38. PubMed ID: 27794516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland.
    Blumenthal DM; Kray JA; Ortmans W; Ziska LH; Pendall E
    Glob Chang Biol; 2016 Sep; 22(9):3026-38. PubMed ID: 27090757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of climate warming on the production of the pioneer moss Racomitrium japonicum: seasonal and year-to-year variations.
    Osaki S; Nakatsubo T
    J Plant Res; 2021 Jan; 134(1):115-126. PubMed ID: 33433707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential allocation of carbon in mosses and grasses governs ecosystem sequestration: a 13C tracer study in the high Arctic.
    Woodin SJ; van der Wal R; Sommerkorn M; Gornall JL
    New Phytol; 2009 Dec; 184(4):944-9. PubMed ID: 19754640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the impact of climatic warming on the carbon balance of the moss Sanionia uncinata on a maritime Antarctic island.
    Nakatsubo T
    J Plant Res; 2002 Apr; 115(1118):99-106. PubMed ID: 12884132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of moss cover and seasonal variation regulate soil physicochemical properties and net nitrogen mineralization rates in Central Himalayas, India.
    Siwach A; Kaushal S; Sarma K; Baishya R
    J Environ Manage; 2023 Nov; 345():118839. PubMed ID: 37598496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of organic matter content and human activities on the occurrence of organic pollutants in antarctic soils, lichens, grass, and mosses.
    Cabrerizo A; Dachs J; Barceló D; Jones KC
    Environ Sci Technol; 2012 Feb; 46(3):1396-405. PubMed ID: 22243336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological restoration of eroded karst utilizing pioneer moss and vascular plant species with selection based on vegetation diversity and underlying soil chemistry.
    Shen JC; Zhang ZH; Liu R; Wang ZH
    Int J Phytoremediation; 2018; 20(14):1369-1379. PubMed ID: 30652488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life under the snow: A year-round transcriptome analysis of Antarctic mosses in natural habitats provides insight into the molecular adaptation of plants under extreme environment.
    Yu J; Lee H; Cho SM; Lee Y; Kim D; Hong SG; Park SJ; Kim SG; Jin H; Lee J
    Plant Cell Environ; 2024 Mar; 47(3):976-991. PubMed ID: 38164069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline.
    Lett S; Teuber LM; Krab EJ; Michelsen A; Olofsson J; Nilsson MC; Wardle DA; Dorrepaal E
    Glob Chang Biol; 2020 Oct; 26(10):5754-5766. PubMed ID: 32715578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.