These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34747572)

  • 1. Graphdiyne-Induced Iron Vacancy for Efficient Nitrogen Conversion.
    Fang Y; Xue Y; Hui L; Yu H; Zhang C; Huang B; Li Y
    Adv Sci (Weinh); 2022 Jan; 9(2):e2102721. PubMed ID: 34747572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis.
    Fang Y; Xue Y; Li Y; Yu H; Hui L; Liu Y; Xing C; Zhang C; Zhang D; Wang Z; Chen X; Gao Y; Huang B; Li Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):13021-13027. PubMed ID: 32333453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation.
    Gao J; Yan X; Huang C; Zhang Z; Fu X; Chang Q; He F; Li M; Li Y
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202307874. PubMed ID: 37408177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Growth of Donor-Bridge-Acceptor Interface for High-Performance Ammonia Production.
    Zhao S; Zheng Z; Qi L; Xue Y; Li Y
    Small; 2022 Apr; 18(13):e2107136. PubMed ID: 35119196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically synthesized SnO
    He X; Guo H; Liao T; Pu Y; Lai L; Wang Z; Tang H
    Nanoscale; 2021 Oct; 13(38):16307-16315. PubMed ID: 34559870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen Vacancy Engineering of MOF-Derived Zn-Doped Co
    Wen L; Li X; Zhang R; Liang H; Zhang Q; Su C; Zeng YJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14181-14188. PubMed ID: 33733723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO
    Yang P; Guo H; Wu H; Zhang F; Liu J; Li M; Yang Y; Cao Y; Yang G; Zhou Y
    J Colloid Interface Sci; 2023 Apr; 636():184-193. PubMed ID: 36634390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Properties of 2D Carbon-Graphdiyne.
    Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y
    Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting.
    Hui L; Jia D; Yu H; Xue Y; Li Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2618-2625. PubMed ID: 29558102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Oxygen Vacancies in CeO
    Li J; Wang Y; Lu X; Guo K; Xu C
    Inorg Chem; 2022 Oct; 61(43):17242-17247. PubMed ID: 36268836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacancy Engineering of Iron-Doped W
    Tong Y; Guo H; Liu D; Yan X; Su P; Liang J; Zhou S; Liu J; Lu GQM; Dou SX
    Angew Chem Int Ed Engl; 2020 May; 59(19):7356-7361. PubMed ID: 32084292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic Mixed Clusters Highly Loaded on Porous 2D Graphdiyne for Hydrogen Energy Conversion.
    Gao Y; Xue Y; Liu T; Liu Y; Zhang C; Xing C; He F; Li Y
    Adv Sci (Weinh); 2021 Nov; 8(21):e2102777. PubMed ID: 34494718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient Graphdiyne Induced Copper and Oxygen Vacancies in Cu
    Wang F; An J; Shen H; Wang Z; Li G; Li Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216397. PubMed ID: 36517418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ir
    Zheng Z; Qi L; Gao Y; Luan X; Xue Y; He F; Li Y
    Natl Sci Rev; 2023 Aug; 10(8):nwad156. PubMed ID: 37427022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coral-like Fe-doped MoO
    He Z; Cui X; Lei G; Liu Z; Yang X; Liu Y; Wan J; Ma F
    Dalton Trans; 2023 Feb; 52(9):2887-2897. PubMed ID: 36779249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions.
    Chen X; Ong WJ; Kong Z; Zhao X; Li N
    Sci Bull (Beijing); 2020 Jan; 65(1):45-54. PubMed ID: 36659068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single boron modulated graphdiyne nanosheets for efficient electrochemical nitrogen fixation: a first-principles study.
    Fu C; Li Y; Wei H
    Phys Chem Chem Phys; 2022 Aug; 24(33):19817-19826. PubMed ID: 35946393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosheet arrays of iron oxide for enhanced ammonia synthesis via electrochemical nitrogen reduction for prospective algal membrane bioreactors.
    Younis MA; Manzoor S; Ali A; Haq F; Aziz T; Kiran M; Farid A; El Sayed ME; Murshed MN; El-Bahy ZM; Akhtar MS
    Chemosphere; 2023 Oct; 338():139621. PubMed ID: 37487973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sp-Hybridized Nitrogen as New Anchoring Sites of Iron Single Atoms to Boost the Oxygen Reduction Reaction.
    Li M; Lv Q; Si W; Hou Z; Huang C
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202208238. PubMed ID: 35879858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of MoS
    Zhang H; Song B; Zhang W; Cheng Y; Chen Q; Lu K
    Chem Sci; 2022 Aug; 13(33):9498-9506. PubMed ID: 36091910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.