These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34747664)

  • 1. Origami Spring-Inspired Shape Morphing for Flexible Robotics.
    Chen Q; Feng F; Lv P; Duan H
    Soft Robot; 2022 Aug; 9(4):798-806. PubMed ID: 34747664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origami spring-inspired metamaterials and robots: An attempt at fully programmable robotics.
    Hu F; Wang W; Cheng J; Bao Y
    Sci Prog; 2020; 103(3):36850420946162. PubMed ID: 32840456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse Origami Design Model for Soft Robotic Development.
    Hu Q; Li J; Tao J; Dong E; Sun D
    Soft Robot; 2024 Feb; 11(1):131-139. PubMed ID: 37616548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired, Shape-Morphing Scale Battery for Untethered Soft Robots.
    Kim MH; Nam S; Oh M; Lee HJ; Jang B; Hyun S
    Soft Robot; 2022 Jun; 9(3):486-496. PubMed ID: 34402653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Locking Pneumatic Actuators Formed from Origami Shape-Morphing Sheets.
    Kim J; Bae J
    Soft Robot; 2024 Feb; 11(1):32-42. PubMed ID: 37616544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Oxide-Enabled Synthesis of Metal Oxide Origamis for Soft Robotics.
    Yang H; Yeow BS; Chang TH; Li K; Fu F; Ren H; Chen PY
    ACS Nano; 2019 May; 13(5):5410-5420. PubMed ID: 30896919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kirigami-Inspired Programmable Soft Magnetoresponsive Actuators with Versatile Morphing Modes.
    Zhu H; Wang Y; Ge Y; Zhao Y; Jiang C
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203711. PubMed ID: 36180420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-Morphing Antenna Array by 4D-Printed Multimaterial Miura Origami.
    Park S; Park E; Lee M; Lim S
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49843-49853. PubMed ID: 37842825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origami-based earthworm-like locomotion robots.
    Fang H; Zhang Y; Wang KW
    Bioinspir Biomim; 2017 Oct; 12(6):065003. PubMed ID: 28777743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics.
    Santoso J; Onal CD
    Soft Robot; 2021 Aug; 8(4):371-386. PubMed ID: 32721270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing interpretable machine learning for holistic inverse design of origami.
    Zhu Y; Filipov ET
    Sci Rep; 2022 Nov; 12(1):19277. PubMed ID: 36369348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired dual-morphing stretchable origami.
    Kim W; Byun J; Kim JK; Choi WY; Jakobsen K; Jakobsen J; Lee DY; Cho KJ
    Sci Robot; 2019 Nov; 4(36):. PubMed ID: 33137780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Induced Topological Patterning toward 3D Shape-Reconfigurable Origami.
    Hu WH; Ji M; Chen TT; Wang S; Tenjimbayashi M; Sekiguchi Y; Watanabe I; Sato C; Naito M
    Small; 2022 Apr; 18(14):e2107078. PubMed ID: 35187814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired spring origami.
    Faber JA; Arrieta AF; Studart AR
    Science; 2018 Mar; 359(6382):1386-1391. PubMed ID: 29567709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cut-and-Fold Self-Sustained Compliant Oscillator for Autonomous Actuation of Origami-Inspired Robots.
    Yan W; Mehta A
    Soft Robot; 2022 Oct; 9(5):871-881. PubMed ID: 34813378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms.
    Kaufmann J; Bhovad P; Li S
    Soft Robot; 2022 Apr; 9(2):212-223. PubMed ID: 33769099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable Stiffness Fibers Enabled Universal and Programmable Re-Foldability Strategy for Modular Soft Robotics.
    Luan H; Wang M; Zhang Q; You Z; Jiao Z
    Adv Sci (Weinh); 2024 Mar; 11(10):e2307350. PubMed ID: 38155496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape Morphing of Hydrogels in Alternating Magnetic Field.
    Tang J; Yin Q; Qiao Y; Wang T
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21194-21200. PubMed ID: 31117469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A worm-inspired robot based on origami structures driven by the magnetic field.
    Jin Y; Li J; Liu S; Cao G; Liu J
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37187174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.