BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34748038)

  • 1. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha.
    Zhai X; Ji L; Gao J; Zhou YJ
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8761-8769. PubMed ID: 34748038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts.
    Yan C; Yu W; Yao L; Guo X; Zhou YJ; Gao J
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3449-3464. PubMed ID: 35538374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing and engineering promoters for metabolic engineering of
    Yan C; Yu W; Zhai X; Yao L; Guo X; Gao J; Zhou YJ
    Synth Syst Biotechnol; 2022 Mar; 7(1):498-505. PubMed ID: 34977394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast.
    Zhai X; Gao J; Li Y; Grininger M; Zhou YJ
    Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2220816120. PubMed ID: 36913588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mix and Match: Promoters and Terminators for Tuning Gene Expression in the Methylotrophic Yeast
    Wefelmeier K; Ebert BE; Blank LM; Schmitz S
    Front Bioeng Biotechnol; 2022; 10():876316. PubMed ID: 35620471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global metabolic rewiring of the nonconventional yeast Ogataea polymorpha for biosynthesis of the sesquiterpenoid β-elemene.
    Ye M; Gao J; Zhou YJ
    Metab Eng; 2023 Mar; 76():225-231. PubMed ID: 36828231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanol bioconversion into C3, C4, and C5 platform chemicals by the yeast Ogataea polymorpha.
    Wefelmeier K; Schmitz S; Kösters BJ; Liebal UW; Blank LM
    Microb Cell Fact; 2024 Jan; 23(1):8. PubMed ID: 38172830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of alcohol oxidase gene expression in methylotrophic yeast Ogataea minuta.
    Yoko-O T; Komatsuzaki A; Yoshihara E; Zhao S; Umemura M; Gao XD; Chiba Y
    J Biosci Bioeng; 2021 Nov; 132(5):437-444. PubMed ID: 34462231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening neutral sites for metabolic engineering of methylotrophic yeast
    Yu W; Gao J; Zhai X; Zhou YJ
    Synth Syst Biotechnol; 2021 Jun; 6(2):63-68. PubMed ID: 33869812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter engineering enables precise metabolic regulation towards efficient β-elemene production in
    Ye M; Gao J; Li J; Yu W; Bai F; Zhou YJ
    Synth Syst Biotechnol; 2024 Jun; 9(2):234-241. PubMed ID: 38385152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1.
    Ravin NV; Eldarov MA; Kadnikov VV; Beletsky AV; Schneider J; Mardanova ES; Smekalova EM; Zvereva MI; Dontsova OA; Mardanov AV; Skryabin KG
    BMC Genomics; 2013 Nov; 14():837. PubMed ID: 24279325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombination machinery engineering for precise genome editing in methylotrophic yeast
    Gao J; Gao N; Zhai X; Zhou YJ
    iScience; 2021 Mar; 24(3):102168. PubMed ID: 33665582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress on heterologous protein production in methylotrophic yeast systems.
    Tsuda M; Nonaka K
    World J Microbiol Biotechnol; 2024 May; 40(7):200. PubMed ID: 38730212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale model reconstruction of the methylotrophic yeast Ogataea polymorpha.
    Liebal UW; Fabry BA; Ravikrishnan A; Schedel CV; Schmitz S; Blank LM; Ebert BE
    BMC Biotechnol; 2021 Mar; 21(1):23. PubMed ID: 33722219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.
    Kata I; Semkiv MV; Ruchala J; Dmytruk KV; Sibirny AA
    Yeast; 2016 Aug; 33(8):471-8. PubMed ID: 27256876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon source requirements for mating and mating-type switching in the methylotrophic yeasts Ogataea (Hansenula) polymorpha and Komagataella phaffii (Pichia pastoris).
    Feng D; Stoyanov A; Olliff JC; Wolfe KH; Lahtchev K; Hanson SJ
    Yeast; 2020 Feb; 37(2):237-245. PubMed ID: 31756769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris.
    Vogl T; Sturmberger L; Kickenweiz T; Wasmayer R; Schmid C; Hatzl AM; Gerstmann MA; Pitzer J; Wagner M; Thallinger GG; Geier M; Glieder A
    ACS Synth Biol; 2016 Feb; 5(2):172-86. PubMed ID: 26592304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic diversity, chromosomal rearrangements, and interspecies hybridization in the Ogataea polymorpha species complex.
    Hanson SJ; Cinnéide EÓ; Salzberg LI; Wolfe KH; McGowan J; Fitzpatrick DA; Matlin K
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanol-inducible promoter of thermotolerant methylotrophic yeast Ogataea thermomethanolica BCC16875 potential for production of heterologous protein at high temperatures.
    Promdonkoy P; Tirasophon W; Roongsawang N; Eurwilaichitr L; Tanapongpipat S
    Curr Microbiol; 2014 Aug; 69(2):143-8. PubMed ID: 24671405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the methylotrophic yeast
    Wefelmeier K; Schmitz S; Haut AM; Otten J; Jülich T; Blank LM
    Front Bioeng Biotechnol; 2023; 11():1223726. PubMed ID: 37456718
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.