These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34748108)

  • 1. Mechanisms of Long-Latency Paired Pulse Suppression: MEG Study.
    Takeuchi N; Fujita K; Taniguchi T; Kinukawa T; Sugiyama S; Kanemoto K; Nishihara M; Inui K
    Brain Topogr; 2022 Mar; 35(2):241-250. PubMed ID: 34748108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Short- and Long-Latency Sensory Suppression: Magnetoencephalography Study.
    Takeuchi N; Fujita K; Taniguchi T; Kinukawa T; Sugiyama S; Kanemoto K; Nishihara M; Inui K
    Neuroscience; 2023 Mar; 514():92-99. PubMed ID: 36435478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-latency suppression of auditory and somatosensory change-related cortical responses.
    Takeuchi N; Sugiyama S; Inui K; Kanemoto K; Nishihara M
    PLoS One; 2018; 13(6):e0199614. PubMed ID: 29944700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Right hemispheric dominancy in the auditory evoked magnetic fields for pure-tone stimuli].
    Kanno A; Nakasato N; Fujiwara S; Yoshimoto T
    No To Shinkei; 1996 Mar; 48(3):240-4. PubMed ID: 8868334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New paradigm for auditory paired pulse suppression.
    Takeuchi N; Sugiyama S; Inui K; Kanemoto K; Nishihara M
    PLoS One; 2017; 12(5):e0177747. PubMed ID: 28542290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of Somatosensory Evoked Cortical Responses by Noxious Stimuli.
    Takeuchi N; Kinukawa T; Sugiyama S; Inui K; Kanemoto K; Nishihara M
    Brain Topogr; 2019 Sep; 32(5):783-793. PubMed ID: 31218521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test-retest reliability of paired pulse suppression paradigm using auditory change-related response.
    Takeuchi N; Fujita K; Kinukawa T; Sugiyama S; Kanemoto K; Nishihara M; Inui K
    J Neurosci Methods; 2021 Mar; 352():109087. PubMed ID: 33508410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: functional MRI and magnetoencephalography.
    Zhang YT; Geng ZJ; Zhang Q; Li W; Zhang J
    Chin Med J (Engl); 2006 Sep; 119(18):1548-54. PubMed ID: 16996009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory sensory gating to the human voice: a preliminary MEG study.
    Hirano Y; Onitsuka T; Kuroki T; Matsuki Y; Hirano S; Maekawa T; Kanba S
    Psychiatry Res; 2008 Aug; 163(3):260-9. PubMed ID: 18650072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prepulse Inhibition of the Auditory Off-Response: A Magnetoencephalographic Study.
    Motomura E; Inui K; Nishihara M; Tanahashi M; Kakigi R; Okada M
    Clin EEG Neurosci; 2018 May; 49(3):152-158. PubMed ID: 28490194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory P50 obtained with a repetitive stimulus paradigm shows suppression to high-intensity tones.
    Ninomiya H; Sato E; Onitsuka T; Hayashida T; Tashiro N
    Psychiatry Clin Neurosci; 2000 Aug; 54(4):493-7. PubMed ID: 10997868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prepulse inhibition of auditory change-related cortical responses.
    Inui K; Tsuruhara A; Kodaira M; Motomura E; Tanii H; Nishihara M; Keceli S; Kakigi R
    BMC Neurosci; 2012 Oct; 13():135. PubMed ID: 23113968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus salience determines defensive behaviors elicited by aversively conditioned serial compound auditory stimuli.
    Hersman S; Allen D; Hashimoto M; Brito SI; Anthony TE
    Elife; 2020 Mar; 9():. PubMed ID: 32216876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex.
    Koch G; Franca M; Mochizuki H; Marconi B; Caltagirone C; Rothwell JC
    J Physiol; 2007 Jan; 578(Pt 2):551-62. PubMed ID: 17124263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex.
    Biermann S; Heil P
    J Neurophysiol; 2000 Nov; 84(5):2426-39. PubMed ID: 11067985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Healthy-side dominance of middle- and long-latency neuromagnetic fields in idiopathic sudden sensorineural hearing loss.
    Li LP; Shiao AS; Chen LF; Niddam DM; Chang SY; Lien CF; Lee SK; Hsieh JC
    Eur J Neurosci; 2006 Aug; 24(3):937-46. PubMed ID: 16930421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconvolution of magnetic acoustic change complex (mACC).
    Bardy F; McMahon CM; Yau SH; Johnson BW
    Clin Neurophysiol; 2014 Nov; 125(11):2220-2231. PubMed ID: 24704142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prepulse inhibition of change-related P50m no correlation with P50m gating.
    Inui K; Tsuruhara A; Nakagawa K; Nishihara M; Kodaira M; Motomura E; Kakigi R
    Springerplus; 2013; 2():588. PubMed ID: 24255871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: single trials analysis using MEG.
    Blumenfeld LD; Clementz BA
    Clin Neurophysiol; 2001 Sep; 112(9):1650-9. PubMed ID: 11514248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state.
    Sand T; Vingen JV
    Cephalalgia; 2000 Nov; 20(9):804-20. PubMed ID: 11167910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.