These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34748317)

  • 1. Exciton Delocalization Counteracts the Energy Gap: A New Pathway toward NIR-Emissive Dyes.
    Cravcenco A; Yu Y; Edhborg F; Goebel JF; Takacs Z; Yang Y; Albinsson B; Börjesson K
    J Am Chem Soc; 2021 Nov; 143(45):19232-19239. PubMed ID: 34748317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Near-Infrared Luminescence of Self-Assembled Platinum(II) Complexes: From Fundamentals to Applications.
    Wei YC; Kuo KH; Chi Y; Chou PT
    Acc Chem Res; 2023 Mar; 56(6):689-699. PubMed ID: 36882976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials.
    Hestand NJ; Spano FC
    Acc Chem Res; 2017 Feb; 50(2):341-350. PubMed ID: 28145688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size Dependence of Non-Radiative Decay Rates in J-Aggregates.
    Humeniuk A; Mitrić R; Bonačić-Koutecký V
    J Phys Chem A; 2020 Dec; 124(49):10143-10151. PubMed ID: 33245238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spectral signatures of Frenkel polarons in H- and J-aggregates.
    Spano FC
    Acc Chem Res; 2010 Mar; 43(3):429-39. PubMed ID: 20014774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Thermally Activated Delayed Fluorescence via J-Aggregates with Strong Intermolecular Charge Transfer.
    Xue J; Liang Q; Wang R; Hou J; Li W; Peng Q; Shuai Z; Qiao J
    Adv Mater; 2019 Jul; 31(28):e1808242. PubMed ID: 31081199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual Nonemissive Behavior of Rubrene J-Aggregates: A Rare Violation.
    Aggarwal N; Patnaik A
    J Phys Chem B; 2017 Apr; 121(14):3190-3201. PubMed ID: 28334526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling.
    Schäfer C; Ringström R; Hanrieder J; Rahm M; Albinsson B; Börjesson K
    Nat Commun; 2024 Oct; 15(1):8705. PubMed ID: 39379375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stochastic reorganizational bath model for electronic energy transfer.
    Fujita T; Huh J; Aspuru-Guzik A
    J Chem Phys; 2014 Jun; 140(24):244103. PubMed ID: 24985614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Structure and Excited-State Dynamics of DNA-Templated Monomers and Aggregates of Asymmetric Polymethine Dyes.
    Duncan KM; Byers HM; Houdek ME; Roy SK; Biaggne A; Barclay MS; Patten LK; Huff JS; Kellis DL; Wilson CK; Lee J; Davis PH; Mass OA; Li L; Turner DB; Hall JA; Knowlton WB; Yurke B; Pensack RD
    J Phys Chem A; 2023 Jun; 127(23):4901-4918. PubMed ID: 37261888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecularly Engineered J-Aggregates Based on Perylene Bisimide Dyes.
    Hecht M; Würthner F
    Acc Chem Res; 2021 Feb; 54(3):642-653. PubMed ID: 33289387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton Delocalization in Indolenine Squaraine Aggregates Templated by DNA Holliday Junction Scaffolds.
    Mass OA; Wilson CK; Roy SK; Barclay MS; Patten LK; Terpetschnig EA; Lee J; Pensack RD; Yurke B; Knowlton WB
    J Phys Chem B; 2020 Oct; 124(43):9636-9647. PubMed ID: 33052691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Through-Space Exciton Delocalization in Segregated HJ-Crystalline Molecular Aggregates.
    Wei YC; Shen SW; Wu CH; Ho SY; Zhang Z; Wu CI; Chou PT
    J Phys Chem A; 2021 Feb; 125(4):943-953. PubMed ID: 33481595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing the internal reorganization energy
    Wu CC; Li EY; Chou PT
    Chem Sci; 2022 Jun; 13(24):7181-7189. PubMed ID: 35799804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited-State Lifetimes of DNA-Templated Cyanine Dimer, Trimer, and Tetramer Aggregates: The Role of Exciton Delocalization, Dye Separation, and DNA Heterogeneity.
    Huff JS; Turner DB; Mass OA; Patten LK; Wilson CK; Roy SK; Barclay MS; Yurke B; Knowlton WB; Davis PH; Pensack RD
    J Phys Chem B; 2021 Sep; 125(36):10240-10259. PubMed ID: 34473494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excited-state relaxation process of free-base and oxovanadium naphthalocyanine in near-infrared region.
    Ito F; Inoue T; Tomita D; Nagamura T
    J Phys Chem B; 2009 Apr; 113(16):5458-63. PubMed ID: 19323512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bright and Fast Emission from Robust Supramolecular J-Aggregate Nanostructures through Silica-Encapsulation.
    Thanippuli Arachchi DH; Barotov U; Perkinson CF; Šverko T; Kaplan AEK; Bawendi MG
    ACS Nano; 2024 Jul; ():. PubMed ID: 39046341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimizing non-radiative decay in molecular aggregates through control of excitonic coupling.
    Wang Y; Ren J; Shuai Z
    Nat Commun; 2023 Aug; 14(1):5056. PubMed ID: 37598183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled formation of the two-dimensional TTBC J-aggregates in an aqueous solution.
    Birkan B; Gülen D; Ozçelik S
    J Phys Chem B; 2006 Jun; 110(22):10805-13. PubMed ID: 16771330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photosynthetic bacteria.
    Malina T; Koehorst R; Bína D; Pšenčík J; van Amerongen H
    Sci Rep; 2021 Apr; 11(1):8354. PubMed ID: 33863954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.