These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 34748536)
21. Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance. Liang J; Tang S; Cheke RA; Wu J Bull Math Biol; 2013 Nov; 75(11):2167-95. PubMed ID: 23943345 [TBL] [Abstract][Full Text] [Related]
22. Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Chailleux A; Mohl EK; Teixeira Alves M; Messelink GJ; Desneux N Pest Manag Sci; 2014 Dec; 70(12):1769-79. PubMed ID: 25256611 [TBL] [Abstract][Full Text] [Related]
23. Pest management of a prey-predator model with sexual favoritism. Pei Y; Yang Y; Li C; Chen L Math Med Biol; 2009 Jun; 26(2):97-115. PubMed ID: 19015368 [TBL] [Abstract][Full Text] [Related]
24. Local and broadscale landscape structure differentially impact predation of two potato pests. Werling BP; Gratton C Ecol Appl; 2010 Jun; 20(4):1114-25. PubMed ID: 20597294 [TBL] [Abstract][Full Text] [Related]
25. Predicting Landscape Configuration Effects on Agricultural Pest Suppression. Haan NL; Zhang Y; Landis DA Trends Ecol Evol; 2020 Feb; 35(2):175-186. PubMed ID: 31699410 [TBL] [Abstract][Full Text] [Related]
26. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield. Liere H; Kim TN; Werling BP; Meehan TD; Landis DA; Gratton C Ecol Appl; 2015 Apr; 25(3):652-61. PubMed ID: 26214911 [TBL] [Abstract][Full Text] [Related]
27. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Roubinet E; Birkhofer K; Malsher G; Staudacher K; Ekbom B; Traugott M; Jonsson M Ecol Appl; 2017 Jun; 27(4):1167-1177. PubMed ID: 28132400 [TBL] [Abstract][Full Text] [Related]
28. A food web approach reveals the vulnerability of biocontrol services by birds and bats to landscape modification at regional scale. Herrera JM; Silva B; Jiménez-Navarro G; Barreiro S; Melguizo-Ruiz N; Moreira F; Vasconcelos S; Morgado R; Rodriguez-Pérez J Sci Rep; 2021 Dec; 11(1):23662. PubMed ID: 34880280 [TBL] [Abstract][Full Text] [Related]
29. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Martin EA; Seo B; Park CR; Reineking B; Steffan-Dewenter I Ecol Appl; 2016 Mar; 26(2):448-62. PubMed ID: 27209787 [TBL] [Abstract][Full Text] [Related]
30. Graph and circuit theory connectivity models of conservation biological control agents. Koh I; Rowe HI; Holland JD Ecol Appl; 2013 Oct; 23(7):1554-73. PubMed ID: 24261040 [TBL] [Abstract][Full Text] [Related]
31. Establishing next-generation pest control services in rice fields: eco-agriculture. Ali MP; Bari MN; Haque SS; Kabir MMM; Afrin S; Nowrin F; Islam MS; Landis DA Sci Rep; 2019 Jul; 9(1):10180. PubMed ID: 31308440 [TBL] [Abstract][Full Text] [Related]
32. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Shackelford G; Steward PR; Benton TG; Kunin WE; Potts SG; Biesmeijer JC; Sait SM Biol Rev Camb Philos Soc; 2013 Nov; 88(4):1002-21. PubMed ID: 23578337 [TBL] [Abstract][Full Text] [Related]
33. Landscape composition mediates the relationship between predator body size and pest control. Perez-Alvarez R; Grab H; Polyakov A; Poveda K Ecol Appl; 2021 Sep; 31(6):e02365. PubMed ID: 33938606 [TBL] [Abstract][Full Text] [Related]
34. [Landscape planning approaches for biodiversity conservation in agriculture]. Liu YH; Li LT; Yu ZR Ying Yong Sheng Tai Xue Bao; 2008 Nov; 19(11):2538-43. PubMed ID: 19238860 [TBL] [Abstract][Full Text] [Related]
35. Perfect cooperative pest control via nano-pesticide and natural predator: High predation selectivity and negligible toxicity toward predatory stinkbug. Wu S; Jiang Q; Xia Z; Sun Z; Mu Q; Huang C; Song F; Yin M; Shen J; Li H; Yan S Chemosphere; 2024 May; 355():141784. PubMed ID: 38537714 [TBL] [Abstract][Full Text] [Related]
36. A meta-analysis of crop pest and natural enemy response to landscape complexity. Chaplin-Kramer R; O'Rourke ME; Blitzer EJ; Kremen C Ecol Lett; 2011 Sep; 14(9):922-32. PubMed ID: 21707902 [TBL] [Abstract][Full Text] [Related]
37. How plant composition in margins influences the assemblage of pests and predators and its effect on biocontrol in melon fields. Sanchez JA; de Pedro L; López-Gallego E; Pérez-Marcos M; Ramírez-Soria MJ; Perera-Fernández LG; Atenza JF Sci Rep; 2024 Jun; 14(1):13094. PubMed ID: 38849533 [TBL] [Abstract][Full Text] [Related]
38. Landscape Complexity has Mixed Effects on an Invasive Aphid and Its Natural Enemies in Sorghum Agroecosystems. Elkins BH; Eubanks MD; Faris AM; Wang HH; Brewer MJ Environ Entomol; 2022 Aug; 51(4):660-669. PubMed ID: 35639524 [TBL] [Abstract][Full Text] [Related]
39. Pest control experiments show benefits of complexity at landscape and local scales. Chaplin-Kramer R; Kremen C Ecol Appl; 2012 Oct; 22(7):1936-48. PubMed ID: 23210310 [TBL] [Abstract][Full Text] [Related]
40. Threshold conditions for integrated pest management models with pesticides that have residual effects. Tang S; Liang J; Tan Y; Cheke RA J Math Biol; 2013 Jan; 66(1-2):1-35. PubMed ID: 22205243 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]