These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34748804)

  • 21. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.
    Kim ES; Kang HJ; Magesh G; Kim JY; Jang JW; Lee JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17762-9. PubMed ID: 25232699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS
    Zheng Z; Ng YH; Tang Y; Li Y; Chen W; Wang J; Li X; Li L
    Chemosphere; 2021 Jan; 263():128279. PubMed ID: 33297223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoanode with Enhanced Performance Achieved by Coating BiVO
    Zhou L; Yang Y; Zhang J; Rao PM
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11356-11362. PubMed ID: 28326767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Engineering of BiVO
    Yang XY; Chen ZW; Yue XZ; Du X; Hou XH; Zhang LY; Chen DL; Yi SS
    Small; 2023 Mar; 19(9):e2205246. PubMed ID: 36581560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ag-Pi/BiVO
    Gao Y; Li X; Hu J; Fan W; Wang F; Xu D; Ding J; Bai H; Shi W
    J Colloid Interface Sci; 2020 Nov; 579():619-627. PubMed ID: 32645529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of M-BiVO
    Baral B; Reddy KH; Parida KM
    J Colloid Interface Sci; 2019 Oct; 554():278-295. PubMed ID: 31302366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the Roles of NiO
    Zhang M; Antony RP; Chiam SY; Abdi FF; Wong LH
    ChemSusChem; 2019 May; 12(9):2022-2028. PubMed ID: 30246933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy Transfer-Induced Photoelectrochemical Improvement from Porous Zeolitic Imidazolate Framework-Decorated BiVO
    Ahn CH; Deshpande NG; Lee HS; Cho HK
    Small Methods; 2021 Feb; 5(2):e2000753. PubMed ID: 34927880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes.
    Zhou L; Zhao C; Giri B; Allen P; Xu X; Joshi H; Fan Y; Titova LV; Rao PM
    Nano Lett; 2016 Jun; 16(6):3463-74. PubMed ID: 27203779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced PEC performance of BiVO
    Wang J; Zhang Y; Bai J; Li J; Zhou C; Li L; Xie C; Zhou T; Zhu H; Zhou B
    J Colloid Interface Sci; 2023 Aug; 644():509-518. PubMed ID: 37019742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into Charge Separation in WO
    Chae SY; Lee CS; Jung H; Joo OS; Min BK; Kim JH; Hwang YJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19780-19790. PubMed ID: 28530789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformal BiVO
    Zhang X; Wang X; Wang D; Ye J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5623-5631. PubMed ID: 30004671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multichannel Charge Transport of a BiVO
    Zhang Z; Chen B; Baek M; Yong K
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6218-6227. PubMed ID: 29377671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving BiVO4 photoanodes for solar water splitting through surface passivation.
    Liang Y; Messinger J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12014-20. PubMed ID: 24845546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mo-doped BiVO4 photoanodes synthesized by reactive sputtering.
    Chen L; Toma FM; Cooper JK; Lyon A; Lin Y; Sharp ID; Ager JW
    ChemSusChem; 2015 Mar; 8(6):1066-71. PubMed ID: 25705871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers.
    Zhang K; Shi XJ; Kim JK; Park JH
    Phys Chem Chem Phys; 2012 Aug; 14(31):11119-24. PubMed ID: 22772604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ag-doped BiVO
    Soltani T; Lee BK
    Sci Total Environ; 2020 Sep; 736():138640. PubMed ID: 32487354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.