These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34748881)

  • 1. Epidemic local final size in a metapopulation network as indicator of geographical priority for control strategies in SIR type diseases.
    Giménez-Mujica UJ; Anzo-Hernández A; Velázquez-Castro J
    Math Biosci; 2022 Jan; 343():108730. PubMed ID: 34748881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network structure-based interventions on spatial spread of epidemics in metapopulation networks.
    Wang B; Gou M; Guo Y; Tanaka G; Han Y
    Phys Rev E; 2020 Dec; 102(6-1):062306. PubMed ID: 33466001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervention threshold for epidemic control in susceptible-infected-recovered metapopulation models.
    Matsuki A; Tanaka G
    Phys Rev E; 2019 Aug; 100(2-1):022302. PubMed ID: 31574659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal vaccination in a stochastic epidemic model of two non-interacting populations.
    Yuan EC; Alderson DL; Stromberg S; Carlson JM
    PLoS One; 2015; 10(2):e0115826. PubMed ID: 25688857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disease and disaster: Optimal deployment of epidemic control facilities in a spatially heterogeneous population with changing behaviour.
    Gaythorpe K; Adams B
    J Theor Biol; 2016 May; 397():169-78. PubMed ID: 26992574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stochastic SIR network epidemic model with preventive dropping of edges.
    Ball F; Britton T; Leung KY; Sirl D
    J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical models to characterize early epidemic growth: A review.
    Chowell G; Sattenspiel L; Bansal S; Viboud C
    Phys Life Rev; 2016 Sep; 18():66-97. PubMed ID: 27451336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale, resurgent epidemics in a hierarchical metapopulation model.
    Watts DJ; Muhamad R; Medina DC; Dodds PS
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11157-62. PubMed ID: 16055564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between epidemic spread and information propagation on metapopulation networks.
    Wang B; Han Y; Tanaka G
    J Theor Biol; 2017 May; 420():18-25. PubMed ID: 28259661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Final size of a multi-group SIR epidemic model: Irreducible and non-irreducible modes of transmission.
    Magal P; Seydi O; Webb G
    Math Biosci; 2018 Jul; 301():59-67. PubMed ID: 29604303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies.
    Krause AL; Kurowski L; Yawar K; Van Gorder RA
    J Theor Biol; 2018 Jul; 449():35-52. PubMed ID: 29673907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intervention to maximise the probability of epidemic fade-out.
    Ballard PG; Bean NG; Ross JV
    Math Biosci; 2017 Nov; 293():1-10. PubMed ID: 28804021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis.
    Kumar A; Goel K; Nilam
    Theory Biosci; 2020 Feb; 139(1):67-76. PubMed ID: 31493204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of final size for vector-transmitted epidemic model.
    Tsubouchi Y; Takeuchi Y; Nakaoka S
    Math Biosci Eng; 2019 Mar; 16(4):2219-2232. PubMed ID: 31137208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic spreading on metapopulation networks including migration and demographics.
    Gong Y; Small M
    Chaos; 2018 Aug; 28(8):083102. PubMed ID: 30180639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The epidemic model based on the approximation for third-order motifs on networks.
    Li J; Li W; Jin Z
    Math Biosci; 2018 Mar; 297():12-26. PubMed ID: 29330075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Scaling of Human Contacts and Epidemic Processes in Metapopulation Networks.
    Tizzoni M; Sun K; Benusiglio D; Karsai M; Perra N
    Sci Rep; 2015 Oct; 5():15111. PubMed ID: 26478209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seven challenges for metapopulation models of epidemics, including households models.
    Ball F; Britton T; House T; Isham V; Mollison D; Pellis L; Scalia Tomba G
    Epidemics; 2015 Mar; 10():63-7. PubMed ID: 25843386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The change of susceptibility following infection can induce failure to predict outbreak potential by R₀.
    Nakata Y; Omori R
    Math Biosci Eng; 2019 Jan; 16(2):813-830. PubMed ID: 30861667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.
    Kim K; Lee S; Lee D; Lee KH
    BMC Bioinformatics; 2017 May; 18(Suppl 7):250. PubMed ID: 28617223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.