These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34748958)
1. Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Gimondi S; Guimarães CF; Vieira SF; Gonçalves VMF; Tiritan ME; Reis RL; Ferreira H; Neves NM Nanomedicine; 2022 Feb; 40():102482. PubMed ID: 34748958 [TBL] [Abstract][Full Text] [Related]
2. Influence of Albumin in the Microfluidic Synthesis of PEG-PLGA Nanoparticles. Poller B; Painter GF; Walker GF Pharm Nanotechnol; 2019; 7(6):460-468. PubMed ID: 31657694 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic-assisted synthesis of multifunctional iodinated contrast agent polymeric nanoplatforms. Chiesa E; Greco A; Dorati R; Conti B; Bruni G; Lamprou D; Genta I Int J Pharm; 2021 Apr; 599():120447. PubMed ID: 33676989 [TBL] [Abstract][Full Text] [Related]
4. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound. Li Z; Huang H; Huang L; Du L; Sun Y; Duan Y Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28406431 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics. Martins C; Sarmento B Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924 [TBL] [Abstract][Full Text] [Related]
6. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Morikawa Y; Tagami T; Hoshikawa A; Ozeki T Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs. Terada T; Kanou M; Hashimoto Y; Tanimoto M; Sugimoto M J Pharm Sci; 2022 Jun; 111(6):1709-1718. PubMed ID: 34863973 [TBL] [Abstract][Full Text] [Related]
8. Preparation, evaluation, and Pan X; Liu S; Ju L; Xi J; He R; Zhao Y; Zhuang R; Huang J Drug Dev Ind Pharm; 2020 Nov; 46(11):1889-1897. PubMed ID: 32975456 [TBL] [Abstract][Full Text] [Related]
9. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Yang A; Yang L; Liu W; Li Z; Xu H; Yang X Int J Pharm; 2007 Feb; 331(1):123-32. PubMed ID: 17097246 [TBL] [Abstract][Full Text] [Related]
10. Development and optimization of microfluidic assisted manufacturing process to produce PLGA nanoparticles. Chiesa E; Bellotti M; Caimi A; Conti B; Dorati R; Conti M; Genta I; Auricchio F Int J Pharm; 2022 Dec; 629():122368. PubMed ID: 36343906 [TBL] [Abstract][Full Text] [Related]
11. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. Mares AG; Pacassoni G; Marti JS; Pujals S; Albertazzi L PLoS One; 2021; 16(6):e0251821. PubMed ID: 34143792 [TBL] [Abstract][Full Text] [Related]
12. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. Keohane K; Brennan D; Galvin P; Griffin BT Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950 [TBL] [Abstract][Full Text] [Related]
13. Modulation of immunosuppressive effect of rapamycin via microfluidic encapsulation within PEG-PLGA nanoparticles. Wu W; Liu R; Guo J; Hu Z; An C; Zhang Y; Liu T; Cen L; Pan Y J Biomater Appl; 2024 Feb; 38(7):821-833. PubMed ID: 38145897 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin. Liu R; Wang Y; Li X; Bao W; Xia G; Chen W; Cheng J; Xu Y; Guo L; Chen B Drug Des Devel Ther; 2015; 9():2705-19. PubMed ID: 26045659 [TBL] [Abstract][Full Text] [Related]
15. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. Chiesa E; Dorati R; Modena T; Conti B; Genta I Int J Pharm; 2018 Jan; 536(1):165-177. PubMed ID: 29175645 [TBL] [Abstract][Full Text] [Related]
16. On the synthesis of mucus permeating nanocarriers. Bourganis V; Karamanidou T; Samaridou E; Karidi K; Kammona O; Kiparissides C Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):239-49. PubMed ID: 25661586 [TBL] [Abstract][Full Text] [Related]
17. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Lim JM; Bertrand N; Valencia PM; Rhee M; Langer R; Jon S; Farokhzad OC; Karnik R Nanomedicine; 2014 Feb; 10(2):401-9. PubMed ID: 23969105 [TBL] [Abstract][Full Text] [Related]
18. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Rafiei P; Haddadi A Int J Nanomedicine; 2017; 12():935-947. PubMed ID: 28184163 [TBL] [Abstract][Full Text] [Related]
19. Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer. Chen J; Li S; Shen Q; He H; Zhang Y Drug Dev Ind Pharm; 2011 Nov; 37(11):1339-46. PubMed ID: 21524153 [TBL] [Abstract][Full Text] [Related]