BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34749001)

  • 1. Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening.
    Yan T; Rao D; Chen Y; Wang Y; Zhang Q; Wu S
    Acta Biomater; 2022 Jan; 138():112-123. PubMed ID: 34749001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
    Jeon O; Kim TH; Alsberg E
    Acta Biomater; 2021 Dec; 136():88-98. PubMed ID: 34563721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic phototuning of 3D hydrogel stiffness.
    Stowers RS; Allen SC; Suggs LJ
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):1953-8. PubMed ID: 25646417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.
    Cassereau L; Miroshnikova YA; Ou G; Lakins J; Weaver VM
    J Biotechnol; 2015 Jan; 193():66-9. PubMed ID: 25435379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoresponsive Hydrogels with Photoswitchable Mechanical Properties Allow Time-Resolved Analysis of Cellular Responses to Matrix Stiffening.
    Lee IN; Dobre O; Richards D; Ballestrem C; Curran JM; Hunt JA; Richardson SM; Swift J; Wong LS
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7765-7776. PubMed ID: 29430919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions.
    Chang CY; Johnson HC; Babb O; Fishel ML; Lin CC
    Acta Biomater; 2021 Aug; 130():161-171. PubMed ID: 34087443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics.
    Guvendiren M; Burdick JA
    Nat Commun; 2012 Apr; 3():792. PubMed ID: 22531177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 13. Magnetic Stiffening in 3D Cell Culture Matrices.
    Chen W; Zhang Y; Kumari J; Engelkamp H; Kouwer PHJ
    Nano Lett; 2021 Aug; 21(16):6740-6747. PubMed ID: 34387494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics.
    Tran KA; Kraus E; Clark AT; Bennett A; Pogoda K; Cheng X; Ce Bers A; Janmey PA; Galie PA
    ACS Appl Mater Interfaces; 2021 May; 13(18):20947-20959. PubMed ID: 33909398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal Stem Cells Resist Mechanical Confinement through the Activation of the Cortex during Cell Division.
    Lin C; He Y; Xu K; Feng Q; Li X; Zhang S; Li K; Bai R; Jiang H; Cai K
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4602-4613. PubMed ID: 34365789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation.
    Richards D; Swift J; Wong LS; Richardson SM
    Adv Exp Med Biol; 2019; 1144():53-69. PubMed ID: 30456642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
    Nguyen HD; Lin CC
    Acta Biomater; 2024 Mar; 177():203-215. PubMed ID: 38354874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.
    Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW
    Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate.
    Zhang Y; Wang Z; Sun Q; Li Q; Li S; Li X
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.