These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34749160)
1. Effects of walking speed on magnitude and symmetry of ground reaction forces in individuals with transfemoral prosthesis. Kobayashi T; Hu M; Amma R; Hisano G; Murata H; Ichimura D; Hobara H J Biomech; 2022 Jan; 130():110845. PubMed ID: 34749160 [TBL] [Abstract][Full Text] [Related]
2. Effects of step frequency during running on the magnitude and symmetry of ground reaction forces in individuals with a transfemoral amputation. Kobayashi T; Koh MWP; Hu M; Murata H; Hisano G; Ichimura D; Hobara H J Neuroeng Rehabil; 2022 Mar; 19(1):33. PubMed ID: 35321725 [TBL] [Abstract][Full Text] [Related]
3. Centre of pressure during walking after unilateral transfemoral amputation. Ichimura D; Hisano G; Murata H; Kobayashi T; Hobara H Sci Rep; 2022 Oct; 12(1):17501. PubMed ID: 36261465 [TBL] [Abstract][Full Text] [Related]
4. Ground reaction forces during double limb stances while walking in individuals with unilateral transfemoral amputation. Kobayashi T; Koh MWP; Jor A; Hisano G; Murata H; Ichimura D; Hobara H Front Bioeng Biotechnol; 2022; 10():1041060. PubMed ID: 36727041 [TBL] [Abstract][Full Text] [Related]
5. Unilateral above-knee amputees achieve symmetric mediolateral ground reaction impulse in walking using an asymmetric gait strategy. Hisano G; Hashizume S; Kobayashi T; Major MJ; Nakashima M; Hobara H J Biomech; 2021 Jan; 115():110201. PubMed ID: 33388484 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of Center of Pressure Trajectory in Gait: Unilateral Transfemoral Amputees Versus Non-Disabled Individuals. He Y; Hu M; Jor A; Hobara H; Gao F; Kobayashi T IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1416-1425. PubMed ID: 38517721 [TBL] [Abstract][Full Text] [Related]
7. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation. Castro MP; Soares D; Mendes E; Machado L PM R; 2014 Aug; 6(8):698-707.e1. PubMed ID: 24487128 [TBL] [Abstract][Full Text] [Related]
8. Transfemoral prosthetic simulators versus amputees: ground reaction forces and spatio-temporal parameters in gait. Kobayashi T; Jor A; He Y; Hu M; Koh MWP; Hisano G; Hara T; Hobara H R Soc Open Sci; 2024 Mar; 11(3):231854. PubMed ID: 38545618 [TBL] [Abstract][Full Text] [Related]
10. Effect of prosthetic alignment on gait and biomechanical loading in individuals with transfemoral amputation: A preliminary study. Zhang T; Bai X; Liu F; Fan Y Gait Posture; 2019 Jun; 71():219-226. PubMed ID: 31078826 [TBL] [Abstract][Full Text] [Related]
11. Absent loading response knee flexion: The impact on gait kinetics and centre of mass motion in individuals with unilateral transfemoral amputation, and the effect of microprocessor controlled knee provision. Carse B; Hebenton J; Brady L; Davie-Smith F Clin Biomech (Bristol); 2023 Aug; 108():106061. PubMed ID: 37556922 [TBL] [Abstract][Full Text] [Related]
12. Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry? Loiret I; Villa C; Dauriac B; Bonnet X; Martinet N; Paysant J; Pillet H Prosthet Orthot Int; 2019 Oct; 43(5):492-499. PubMed ID: 31364482 [TBL] [Abstract][Full Text] [Related]
13. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait. Zmitrewicz RJ; Neptune RR; Walden JG; Rogers WE; Bosker GW Arch Phys Med Rehabil; 2006 Oct; 87(10):1334-9. PubMed ID: 17023242 [TBL] [Abstract][Full Text] [Related]
14. Foot trajectories and loading rates in a transfemoral amputee for six different commercial prosthetic knees: An indication of adaptability. Abouhossein A; Awad MI; Maqbool HF; Crisp C; Stewart TD; Messenger N; Richardson RC; Dehghani-Sanij AA; Bradley D Med Eng Phys; 2019 Jun; 68():46-56. PubMed ID: 30979583 [TBL] [Abstract][Full Text] [Related]
15. Spatiotemporal gait patterns in individuals with unilateral transfemoral amputation: A hierarchical cluster analysis. Ichimura D; Amma R; Hisano G; Murata H; Hobara H PLoS One; 2022; 17(12):e0279593. PubMed ID: 36548294 [TBL] [Abstract][Full Text] [Related]
16. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees. Strike SC; Arcone D; Orendurff M Gait Posture; 2018 May; 62():327-332. PubMed ID: 29614465 [TBL] [Abstract][Full Text] [Related]
17. Anterior-posterior ground reaction forces across a range of running speeds in unilateral transfemoral amputees. Sakata H; Hashizume S; Amma R; Hisano G; Murata H; Takemura H; Usui F; Hobara H Sports Biomech; 2024 Jan; 23(1):69-80. PubMed ID: 33112726 [TBL] [Abstract][Full Text] [Related]
18. Coordination of Lower Limb During Gait in Individuals With Unilateral Transfemoral Amputation. Hu M; He Y; Hisano G; Hobara H; Kobayashi T IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3835-3843. PubMed ID: 37721878 [TBL] [Abstract][Full Text] [Related]
19. The effect of prosthetic alignment on the stump temperature and ground reaction forces during gait in transfemoral amputees. Cárdenas AM; Uribe J; Font-Llagunes JM; Hernández AM; Plata JA Gait Posture; 2022 Jun; 95():76-83. PubMed ID: 35461047 [TBL] [Abstract][Full Text] [Related]
20. Mediation of the mediolateral ground reaction force profile to maintain straight running among unilateral transfemoral amputees. Tang YW; Murai A; Hobara H Sci Rep; 2023 May; 13(1):7823. PubMed ID: 37188732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]