BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34749160)

  • 1. Effects of walking speed on magnitude and symmetry of ground reaction forces in individuals with transfemoral prosthesis.
    Kobayashi T; Hu M; Amma R; Hisano G; Murata H; Ichimura D; Hobara H
    J Biomech; 2022 Jan; 130():110845. PubMed ID: 34749160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of step frequency during running on the magnitude and symmetry of ground reaction forces in individuals with a transfemoral amputation.
    Kobayashi T; Koh MWP; Hu M; Murata H; Hisano G; Ichimura D; Hobara H
    J Neuroeng Rehabil; 2022 Mar; 19(1):33. PubMed ID: 35321725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centre of pressure during walking after unilateral transfemoral amputation.
    Ichimura D; Hisano G; Murata H; Kobayashi T; Hobara H
    Sci Rep; 2022 Oct; 12(1):17501. PubMed ID: 36261465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ground reaction forces during double limb stances while walking in individuals with unilateral transfemoral amputation.
    Kobayashi T; Koh MWP; Jor A; Hisano G; Murata H; Ichimura D; Hobara H
    Front Bioeng Biotechnol; 2022; 10():1041060. PubMed ID: 36727041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unilateral above-knee amputees achieve symmetric mediolateral ground reaction impulse in walking using an asymmetric gait strategy.
    Hisano G; Hashizume S; Kobayashi T; Major MJ; Nakashima M; Hobara H
    J Biomech; 2021 Jan; 115():110201. PubMed ID: 33388484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation.
    Castro MP; Soares D; Mendes E; Machado L
    PM R; 2014 Aug; 6(8):698-707.e1. PubMed ID: 24487128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prosthetic alignment on gait and biomechanical loading in individuals with transfemoral amputation: A preliminary study.
    Zhang T; Bai X; Liu F; Fan Y
    Gait Posture; 2019 Jun; 71():219-226. PubMed ID: 31078826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absent loading response knee flexion: The impact on gait kinetics and centre of mass motion in individuals with unilateral transfemoral amputation, and the effect of microprocessor controlled knee provision.
    Carse B; Hebenton J; Brady L; Davie-Smith F
    Clin Biomech (Bristol, Avon); 2023 Aug; 108():106061. PubMed ID: 37556922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry?
    Loiret I; Villa C; Dauriac B; Bonnet X; Martinet N; Paysant J; Pillet H
    Prosthet Orthot Int; 2019 Oct; 43(5):492-499. PubMed ID: 31364482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait.
    Zmitrewicz RJ; Neptune RR; Walden JG; Rogers WE; Bosker GW
    Arch Phys Med Rehabil; 2006 Oct; 87(10):1334-9. PubMed ID: 17023242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot trajectories and loading rates in a transfemoral amputee for six different commercial prosthetic knees: An indication of adaptability.
    Abouhossein A; Awad MI; Maqbool HF; Crisp C; Stewart TD; Messenger N; Richardson RC; Dehghani-Sanij AA; Bradley D
    Med Eng Phys; 2019 Jun; 68():46-56. PubMed ID: 30979583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal gait patterns in individuals with unilateral transfemoral amputation: A hierarchical cluster analysis.
    Ichimura D; Amma R; Hisano G; Murata H; Hobara H
    PLoS One; 2022; 17(12):e0279593. PubMed ID: 36548294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees.
    Strike SC; Arcone D; Orendurff M
    Gait Posture; 2018 May; 62():327-332. PubMed ID: 29614465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anterior-posterior ground reaction forces across a range of running speeds in unilateral transfemoral amputees.
    Sakata H; Hashizume S; Amma R; Hisano G; Murata H; Takemura H; Usui F; Hobara H
    Sports Biomech; 2024 Jan; 23(1):69-80. PubMed ID: 33112726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of Lower Limb During Gait in Individuals With Unilateral Transfemoral Amputation.
    Hu M; He Y; Hisano G; Hobara H; Kobayashi T
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3835-3843. PubMed ID: 37721878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of prosthetic alignment on the stump temperature and ground reaction forces during gait in transfemoral amputees.
    Cárdenas AM; Uribe J; Font-Llagunes JM; Hernández AM; Plata JA
    Gait Posture; 2022 Jun; 95():76-83. PubMed ID: 35461047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediation of the mediolateral ground reaction force profile to maintain straight running among unilateral transfemoral amputees.
    Tang YW; Murai A; Hobara H
    Sci Rep; 2023 May; 13(1):7823. PubMed ID: 37188732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait compensatory mechanisms in unilateral transfemoral amputees.
    Harandi VJ; Ackland DC; Haddara R; Lizama LEC; Graf M; Galea MP; Lee PVS
    Med Eng Phys; 2020 Mar; 77():95-106. PubMed ID: 31919013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of the human walk-to-run gait transition in persons with unilateral transtibial amputation.
    Giest TN; Chang YH
    J Biomech; 2016 Jun; 49(9):1757-1764. PubMed ID: 27087677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.