BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34749203)

  • 1. 3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering.
    Yedekçi B; Tezcaner A; Yılmaz B; Demir T; Evis Z
    J Mech Behav Biomed Mater; 2022 Jan; 125():104941. PubMed ID: 34749203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds.
    Koupaei N; Karkhaneh A; Daliri Joupari M
    J Biomed Mater Res A; 2015 Dec; 103(12):3919-26. PubMed ID: 26015080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation.
    Pazarçeviren AE; Dikmen T; Altunbaş K; Yaprakçı V; Erdemli Ö; Keskin D; Tezcaner A
    J Tissue Eng Regen Med; 2020 Jan; 14(1):3-15. PubMed ID: 31475790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering.
    Jodati H; Evis Z; Tezcaner A; Alshemary AZ; Motameni A
    J Mech Behav Biomed Mater; 2023 Apr; 140():105722. PubMed ID: 36796253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration.
    Yin HM; Li X; Wang P; Ren Y; Liu W; Xu JZ; Li JH; Li ZM
    J Biomed Mater Res A; 2019 Mar; 107(3):654-662. PubMed ID: 30474348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair.
    Ge M; Ge K; Gao F; Yan W; Liu H; Xue L; Jin Y; Ma H; Zhang J
    Int J Nanomedicine; 2018; 13():1707-1721. PubMed ID: 29599615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite.
    He D; Dong W; Tang S; Wei J; Liu Z; Gu X; Li M; Guo H; Niu Y
    J Mater Sci Mater Med; 2014 Jun; 25(6):1415-24. PubMed ID: 24595904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method.
    Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior.
    Rezania N; Asadi-Eydivand M; Abolfathi N; Bonakdar S; Mehrjoo M; Solati-Hashjin M
    J Mater Sci Mater Med; 2022 Mar; 33(3):31. PubMed ID: 35267105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique.
    Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S
    J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming.
    Jing X; Mi HY; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():53-61. PubMed ID: 28024618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.
    Zhang X; Chang W; Lee P; Wang Y; Yang M; Li J; Kumbar SG; Yu X
    PLoS One; 2014; 9(1):e85871. PubMed ID: 24475056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.