These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34749388)

  • 1. Optical properties of amorphous carbon determined by reflection electron energy loss spectroscopy spectra.
    Yang LH; Gong JM; Sulyok A; Menyhárd M; Sáfrán G; Tőkési K; Da B; Ding ZJ
    Phys Chem Chem Phys; 2021 Nov; 23(44):25335-25346. PubMed ID: 34749388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved reverse Monte Carlo analysis of optical property of Fe and Ni from reflection electron energy loss spectroscopy spectra.
    Li Z; Gong JM; Da B; Tóth J; Tőkési K; Zeng RG; Ding ZJ
    Sci Rep; 2023 Aug; 13(1):12480. PubMed ID: 37528114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy loss function of samarium.
    Yang TF; Zeng RG; Yang LH; Sulyok A; Menyhárd M; Tőkési K; Ding ZJ
    Sci Rep; 2023 Mar; 13(1):3909. PubMed ID: 36890188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy.
    Tahir D; Tougaard S
    J Phys Condens Matter; 2012 May; 24(17):175002. PubMed ID: 22475683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of molybdenum in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy.
    Pauly N; Yubero F; Tougaard S
    Appl Opt; 2020 May; 59(14):4527-4532. PubMed ID: 32400432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lifshitz analysis of dispersion forces based on quantitative reflection electron energy loss spectroscopy.
    Wiesing M; Grundmeier G
    J Colloid Interface Sci; 2018 Mar; 514():625-633. PubMed ID: 29306193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet.
    Pauly N; Yubero F; Espinós JP; Tougaard S
    Appl Opt; 2017 Aug; 56(23):6611-6621. PubMed ID: 29047953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band gap measurement by nano-beam STEM with small off-axis angle transmission electron energy loss spectroscopy (TEELS).
    Wang YY; Jin Q; Zhuang K; Choi JK; Nxumalo J
    Ultramicroscopy; 2021 Jan; 220():113164. PubMed ID: 33186852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy electron properties: Electron inelastic mean free path, energy loss function and the dielectric function. Recent measurements, applications, and the plasmon-coupling theory.
    Chantler CT; Bourke JD
    Ultramicroscopy; 2019 Jun; 201():38-48. PubMed ID: 30925298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical constants of Yb films in the 23-1700 eV range.
    Fernández-Perea M; Larruquert JI; Aznárez JA; Méndez JA; Poletto L; Garoli D; Malvezzi AM; Giglia A; Nannarone S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3691-9. PubMed ID: 18059921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical and structural properties of amorphous SexTe100-x aligned nanorods.
    Al-Agel FA
    Nanoscale Res Lett; 2013 Dec; 8(1):520. PubMed ID: 24321447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft X-ray refractive index by reconciling total electron yield with specular reflection: experimental determination of the optical constants of graphite.
    Jansing C; Wahab H; Timmers H; Gaupp A; Mertins HC
    J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1433-1443. PubMed ID: 30179183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmittance and optical constants of erbium films in the 3.25-1580 eV spectral range.
    Larruquert JI; Frassetto F; García-Cortés S; Vidal-Dasilva M; Fernández-Perea M; Aznárez JA; Méndez JA; Poletto L; Malvezzi AM; Giglia A; Nannarone S
    Appl Opt; 2011 May; 50(15):2211-9. PubMed ID: 21614114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical constants of hydrogenated and unhydrogenated amorphous carbon in the 0.5-12-eV range.
    Compagnini G
    Appl Opt; 1994 Nov; 33(31):7377-81. PubMed ID: 20941298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Design of a Reflection Electron Energy Loss Spectrometer Attachment for Low Voltage Scanning Electron Microscopy.
    Chuah J; Khursheed A
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical constants of electron-beam evaporated boron films in the 6.8-900 eV photon energy range.
    Fernández-Perea M; Larruquert JI; Aznárez JA; Méndez JA; Vidal-Dasilva M; Gullikson E; Aquila A; Soufli R; Fierro JL
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3800-7. PubMed ID: 18059933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of energy loss function to the Monte Carlo simulated electron backscattering coefficient.
    Chen H; Zou Y; Mao S; Khan MSS; Tőkési K; Ding ZJ
    Sci Rep; 2022 Oct; 12(1):18201. PubMed ID: 36307500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.
    Zhu J; Crozier PA; Ercius P; Anderson JR
    Microsc Microanal; 2014 Jun; 20(3):748-59. PubMed ID: 24735494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Measurements of Dielectric and Optical Functions of Liquid Water and Liquid Benzene in the VUV Region (1-100 eV) Using Small-Angle Inelastic X-ray Scattering.
    Hayashi H; Hiraoka N
    J Phys Chem B; 2015 Apr; 119(17):5609-23. PubMed ID: 25835527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV Sterilization Effects and Osteoblast Proliferation on Amorphous Carbon Films Classified Based on Optical Constants.
    Kanasugi K; Arimura K; Alanazi A; Ohgoe Y; Manome Y; Hiratsuka M; Hirakuri K
    Bioengineering (Basel); 2022 Sep; 9(10):. PubMed ID: 36290473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.