These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34750434)

  • 1. The influence of IONPs core size on their biocompatibility and activity in in vitro cellular models.
    Janik-Olchawa N; Drozdz A; Ryszawy D; Pudelek M; Planeta K; Setkowicz Z; Sniegocki M; Wytrwal-Sarna M; Gajewska M; Chwiej J
    Sci Rep; 2021 Nov; 11(1):21808. PubMed ID: 34750434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ultrasmall IONPs and Fe salts biocompatibility and activity in multi-cellular in vitro models.
    Janik-Olchawa N; Drozdz A; Ryszawy D; Pudełek M; Planeta K; Setkowicz Z; Śniegocki M; Żądło A; Ostachowicz B; Chwiej J
    Sci Rep; 2020 Sep; 10(1):15447. PubMed ID: 32963318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical changes of macrophages and U87MG cells occurring as a result of the exposure to iron oxide nanoparticles detected with the Raman microspectroscopy.
    Janik-Olchawa N; Drozdz A; Wajda A; Sitarz M; Planeta K; Setkowicz Z; Ryszawy D; Kmita A; Chwiej J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121337. PubMed ID: 35537264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles.
    Xu Y; Wu H; Huang J; Qian W; Martinson DE; Ji B; Li Y; Wang YA; Yang L; Mao H
    Theranostics; 2020; 10(6):2479-2494. PubMed ID: 32194814
    [No Abstract]   [Full Text] [Related]  

  • 6. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles.
    Norouzi M; Yathindranath V; Thliveris JA; Kopec BM; Siahaan TJ; Miller DW
    Sci Rep; 2020 Jul; 10(1):11292. PubMed ID: 32647151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles.
    Dan M; Scott DF; Hardy PA; Wydra RJ; Hilt JZ; Yokel RA; Bae Y
    Pharm Res; 2013 Feb; 30(2):552-61. PubMed ID: 23080062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of T2* Weighted MRI Imaging Sensitivity of U87MG Glioblastoma Cells Using γ-Ray Irradiated Low Molecular Weight Hyaluronic Acid-Conjugated Iron Nanoparticles.
    Huang HM; Wu PH; Chou PC; Hsiao WT; Wang HT; Chiang HP; Lee CM; Wang SH; Hsiao YC
    Int J Nanomedicine; 2021; 16():3789-3802. PubMed ID: 34103915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron Oxide Nanoparticles Combined with Cytosine Arabinoside Show Anti-Leukemia Stem Cell Effects on Acute Myeloid Leukemia by Regulating Reactive Oxygen Species.
    Dou J; Li L; Guo M; Mei F; Zheng D; Xu H; Xue R; Bao X; Zhao F; Zhang Y
    Int J Nanomedicine; 2021; 16():1231-1244. PubMed ID: 33633448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling.
    Joris F; Valdepérez D; Pelaz B; Wang T; Doak SH; Manshian BB; Soenen SJ; Parak WJ; De Smedt SC; Raemdonck K
    Acta Biomater; 2017 Jun; 55():204-213. PubMed ID: 28373085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells.
    Wu X; Tan Y; Mao H; Zhang M
    Int J Nanomedicine; 2010 Aug; 5():385-99. PubMed ID: 20957160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration.
    Aboushoushah S; Alshammari W; Darwesh R; Elbaily N
    Life Sci; 2021 Jul; 277():119625. PubMed ID: 34015288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor.
    Nosrati H; Salehiabar M; Fridoni M; Abdollahifar MA; Kheiri Manjili H; Davaran S; Danafar H
    Sci Rep; 2019 May; 9(1):7173. PubMed ID: 31073222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools.
    Askri D; Cunin V; Béal D; Berthier S; Chovelon B; Arnaud J; Rachidi W; Sakly M; Amara S; Sève M; Lehmann SG
    Nanotoxicology; 2019 Oct; 13(8):1021-1040. PubMed ID: 31132913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex.
    Liu L; Jin R; Duan J; Yang L; Cai Z; Zhu W; Nie Y; He J; Xia C; Gong Q; Song B; Anderson JM; Ai H
    Acta Biomater; 2020 Feb; 103():281-292. PubMed ID: 31866569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L.
    Irum S; Jabeen N; Ahmad KS; Shafique S; Khan TF; Gul H; Anwaar S; Shah NI; Mehmood A; Hussain SZ
    PLoS One; 2020; 15(12):e0242829. PubMed ID: 33259506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles.
    Drozdz A; Matusiak K; Setkowicz Z; Ciarach M; Janeczko K; Sandt C; Borondics F; Horak D; Babic M; Chwiej J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118355. PubMed ID: 32344375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Synthesis and Characterization of L-Aspartic Acid Coated Iron Oxide Magnetic Nanoparticles (IONPs) For Biomedical Applications.
    Salehiabar M; Nosrati H; Davaran S; Danafar H; Manjili HK
    Drug Res (Stuttg); 2018 May; 68(5):280-285. PubMed ID: 29036735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.