These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34750461)
1. Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Ando Y; Nakazawa H; Miura D; Otake M; Umetsu M Sci Rep; 2021 Nov; 11(1):21882. PubMed ID: 34750461 [TBL] [Abstract][Full Text] [Related]
2. Nanobody-siRNA Conjugates for Targeted Delivery of siRNA to Cancer Cells. Zavoiura O; Brunner B; Casteels P; Zimmermann L; Ozog M; Boutton C; Helms MW; Wagenaar T; Adam V; Peterka J; Metz-Weidmann C; Deschaght P; Scheidler S; Jahn-Hofmann K Mol Pharm; 2021 Mar; 18(3):1048-1060. PubMed ID: 33444501 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical characterization of siRNA-peptide complexes. Law M; Jafari M; Chen P Biotechnol Prog; 2008; 24(4):957-63. PubMed ID: 19194904 [TBL] [Abstract][Full Text] [Related]
4. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis. Weng D; Yang L; Xie Y Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081 [TBL] [Abstract][Full Text] [Related]
5. A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in Escherichia coli. Yu J; Guo Y; Gu Y; Fan X; Li F; Song H; Nian R; Liu W Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1967-1977. PubMed ID: 35243528 [TBL] [Abstract][Full Text] [Related]
6. Cell-penetrable nanobodies (transbodies) that inhibit the tyrosine kinase activity of EGFR leading to the impediment of human lung adenocarcinoma cell motility and survival. Tabtimmai L; Suphakun P; Srisook P; Kiriwan D; Phanthong S; Kiatwuthinon P; Chaicumpa W; Choowongkomon K J Cell Biochem; 2019 Oct; 120(10):18077-18087. PubMed ID: 31172597 [TBL] [Abstract][Full Text] [Related]
7. Production of a mono-biotinylated EGFR nanobody in the E. coli periplasm using the pET22b vector. Noor A; Walser G; Wesseling M; Giron P; Laffra AM; Haddouchi F; De Grève J; Kronenberger P BMC Res Notes; 2018 Oct; 11(1):751. PubMed ID: 30348204 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of fusion tags used to functionalize recombinant antibodies. Veggiani G; Giabbai B; Semrau MS; Medagli B; Riccio V; Bajc G; Storici P; de Marco A Protein Expr Purif; 2020 Feb; 166():105505. PubMed ID: 31563543 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of HIV replication through siRNA carried by CXCR4-targeted chimeric nanobody. Cunha-Santos C; Perdigao PRL; Martin F; Oliveira JG; Cardoso M; Manuel A; Taveira N; Goncalves J Cell Mol Life Sci; 2020 Jul; 77(14):2859-2870. PubMed ID: 31641784 [TBL] [Abstract][Full Text] [Related]
10. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Ta DT; Redeker ES; Billen B; Reekmans G; Sikulu J; Noben JP; Guedens W; Adriaensens P Protein Eng Des Sel; 2015 Oct; 28(10):351-63. PubMed ID: 26243885 [TBL] [Abstract][Full Text] [Related]
11. Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy. Braun MB; Traenkle B; Koch PA; Emele F; Weiss F; Poetz O; Stehle T; Rothbauer U Sci Rep; 2016 Jan; 6():19211. PubMed ID: 26791954 [TBL] [Abstract][Full Text] [Related]
12. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach. Kooijmans SAA; Gitz-Francois JJJM; Schiffelers RM; Vader P Nanoscale; 2018 Feb; 10(5):2413-2426. PubMed ID: 29334397 [TBL] [Abstract][Full Text] [Related]
13. Characterization and comparison of two peptide-tag specific nanobodies for immunoaffinity chromatography. Ren J; Zhang C; Ji F; Jia L J Chromatogr A; 2020 Aug; 1624():461227. PubMed ID: 32540069 [TBL] [Abstract][Full Text] [Related]
14. Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging. Hebbrecht T; Liu J; Zwaenepoel O; Boddin G; Van Leene C; Decoene K; Madder A; Braeckmans K; Gettemans J N Biotechnol; 2020 Nov; 59():33-43. PubMed ID: 32659511 [TBL] [Abstract][Full Text] [Related]
15. Target protein deglycosylation in living cells by a nanobody-fused split O-GlcNAcase. Ge Y; Ramirez DH; Yang B; D'Souza AK; Aonbangkhen C; Wong S; Woo CM Nat Chem Biol; 2021 May; 17(5):593-600. PubMed ID: 33686291 [TBL] [Abstract][Full Text] [Related]
16. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Wang HX; Yang XZ; Sun CY; Mao CQ; Zhu YH; Wang J Biomaterials; 2014 Aug; 35(26):7622-34. PubMed ID: 24929619 [TBL] [Abstract][Full Text] [Related]
17. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain. Haroon MM; Dar GH; Jeyalakshmi D; Venkatraman U; Saba K; Rangaraj N; Patel AB; Gopal V J Control Release; 2016 Apr; 228():120-131. PubMed ID: 26948382 [TBL] [Abstract][Full Text] [Related]
18. Poly-L-arginine and dextran sulfate-based nanocomplex for epidermal growth factor receptor (EGFR) siRNA delivery: its application for head and neck cancer treatment. Cho HJ; Chong S; Chung SJ; Shim CK; Kim DD Pharm Res; 2012 Apr; 29(4):1007-19. PubMed ID: 22169985 [TBL] [Abstract][Full Text] [Related]
19. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes. Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295 [TBL] [Abstract][Full Text] [Related]
20. Design and evaluation of histidine-rich amphipathic peptides for siRNA delivery. Langlet-Bertin B; Leborgne C; Scherman D; Bechinger B; Mason AJ; Kichler A Pharm Res; 2010 Jul; 27(7):1426-36. PubMed ID: 20393870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]