These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34750541)

  • 1. Daily briefing: Global CO
    Graham F
    Nature; 2021 Nov; ():. PubMed ID: 34750541
    [No Abstract]   [Full Text] [Related]  

  • 2. Near-real-time global gridded daily CO
    Dou X; Wang Y; Ciais P; Chevallier F; Davis SJ; Crippa M; Janssens-Maenhout G; Guizzardi D; Solazzo E; Yan F; Huo D; Zheng B; Zhu B; Cui D; Ke P; Sun T; Wang H; Zhang Q; Gentine P; Deng Z; Liu Z
    Innovation (Camb); 2022 Jan; 3(1):100182. PubMed ID: 34988539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty.
    Tian H; Yang J; Xu R; Lu C; Canadell JG; Davidson EA; Jackson RB; Arneth A; Chang J; Ciais P; Gerber S; Ito A; Joos F; Lienert S; Messina P; Olin S; Pan S; Peng C; Saikawa E; Thompson RL; Vuichard N; Winiwarter W; Zaehle S; Zhang B
    Glob Chang Biol; 2019 Feb; 25(2):640-659. PubMed ID: 30414347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Monitor, a near-real-time daily dataset of global CO
    Liu Z; Ciais P; Deng Z; Davis SJ; Zheng B; Wang Y; Cui D; Zhu B; Dou X; Ke P; Sun T; Guo R; Zhong H; Boucher O; Bréon FM; Lu C; Guo R; Xue J; Boucher E; Tanaka K; Chevallier F
    Sci Data; 2020 Nov; 7(1):392. PubMed ID: 33168822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time and frequency analysis of daily-based nexus between global CO
    Kartal MT; Ulussever T; Pata UK; Depren SK
    Sci Rep; 2024 Feb; 14(1):3698. PubMed ID: 38355707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Temporal and Spatial Dynamics of Greenhouse Gas Emissions and Its Controlling Factors in a Coastal Saline Wetland in North Jiangsu].
    Xu XW; Zou XQ; Liu JR
    Huan Jing Ke Xue; 2016 Jun; 37(6):2383-2392. PubMed ID: 29964911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of CH
    Chen Q; Guo B; Zhao C; Xing B
    Environ Pollut; 2018 Aug; 239():289-299. PubMed ID: 29660501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Liang S; Yang X; Qi J; Wang Y; Xie W; Muttarak R; Guan D
    Environ Sci Technol; 2020 Oct; 54(19):12530-12538. PubMed ID: 32866384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-real-time global gridded daily CO2 emissions 2021.
    Dou X; Hong J; Ciais P; Chevallier F; Yan F; Yu Y; Hu Y; Huo D; Sun Y; Wang Y; Davis SJ; Crippa M; Janssens-Maenhout G; Guizzardi D; Solazzo E; Lin X; Song X; Zhu B; Cui D; Ke P; Wang H; Zhou W; Huang X; Deng Z; Liu Z
    Sci Data; 2023 Feb; 10(1):69. PubMed ID: 36732516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical review on global CO
    Bahman N; Alalaiwat D; Abdulmohsen Z; Al Khalifa M; Al Baharna S; Al-Mannai MA; Younis A
    Rev Environ Health; 2023 Dec; 38(4):681-696. PubMed ID: 36038264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How climate change may shift power demand in Japan: Insights from data-driven analysis.
    Gurriaran L; Tanaka K; Takahashi K; Ciais P
    J Environ Manage; 2023 Nov; 345():118799. PubMed ID: 37690242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the gravity movement and decoupling state of global energy-related CO
    Song Y; Zhang M
    J Environ Manage; 2019 Sep; 245():302-310. PubMed ID: 31158682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How much do direct livestock emissions actually contribute to global warming?
    Reisinger A; Clark H
    Glob Chang Biol; 2018 Apr; 24(4):1749-1761. PubMed ID: 29105912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal comparison of global inventories of CO
    Shi Y; Matsunaga T
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16905-16916. PubMed ID: 28577139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saving less in China facilitates global CO
    Lin C; Qi J; Liang S; Feng C; Wiedmann TO; Liao Y; Yang X; Li Y; Mi Z; Yang Z
    Nat Commun; 2020 Mar; 11(1):1358. PubMed ID: 32170147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the persistence of shocks to global CO
    Erdogan S; Pata UK; Solarin SA; Okumus I
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77311-77320. PubMed ID: 35675017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A decade of CO
    Ueyama M; Takano T
    Environ Pollut; 2022 Jul; 304():119210. PubMed ID: 35358629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China.
    Li X; Zhang X
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117485-117502. PubMed ID: 37867169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposing seasonal temperature dependencies of CO
    Li J; Pei J; Fang C; Li B; Nie M
    Glob Chang Biol; 2023 Feb; 29(4):1133-1143. PubMed ID: 36385719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.