These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34750600)

  • 1. Collective motion of run-and-tumble repulsive and attractive particles in one-dimensional systems.
    Gutiérrez CMB; Vanhille-Campos C; Alarcón F; Pagonabarraga I; Brito R; Valeriani C
    Soft Matter; 2021 Dec; 17(46):10479-10491. PubMed ID: 34750600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic run-and-tumble-turn dynamics.
    Loewe B; Kozhukhov T; Shendruk TN
    Soft Matter; 2024 Jan; 20(5):1133-1150. PubMed ID: 38226730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jamming and Attraction of Interacting Run-and-Tumble Random Walkers.
    Slowman AB; Evans MR; Blythe RA
    Phys Rev Lett; 2016 May; 116(21):218101. PubMed ID: 27284675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal scaling in active single-file dynamics.
    Dolai P; Das A; Kundu A; Dasgupta C; Dhar A; Kumar KV
    Soft Matter; 2020 Aug; 16(30):7077-7087. PubMed ID: 32657314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Run-and-tumble dynamics in a crowded environment: persistent exclusion process for swimmers.
    Soto R; Golestanian R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012706. PubMed ID: 24580256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hard core run and tumble particles on a one-dimensional lattice.
    Dandekar R; Chakraborti S; Rajesh R
    Phys Rev E; 2020 Dec; 102(6-1):062111. PubMed ID: 33466079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers.
    Scagliarini A; Pagonabarraga I
    Soft Matter; 2022 Mar; 18(12):2407-2413. PubMed ID: 35266484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of anisotropy on the formation of active particle films.
    Rebocho TC; Tasinkevych M; Dias CS
    Phys Rev E; 2022 Aug; 106(2-1):024609. PubMed ID: 36109963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Random Walk of Active Colloids: From Individual Run-and-Tumble to Dynamic Clustering.
    Karani H; Pradillo GE; Vlahovska PM
    Phys Rev Lett; 2019 Nov; 123(20):208002. PubMed ID: 31809118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Run-and-tumble motion with steplike responses to a stochastic input.
    Dev S; Chatterjee S
    Phys Rev E; 2019 Jan; 99(1-1):012402. PubMed ID: 30780313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy Production of Run-and-Tumble Particles.
    Paoluzzi M; Puglisi A; Angelani L
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current fluctuations in noninteracting run-and-tumble particles in one dimension.
    Banerjee T; Majumdar SN; Rosso A; Schehr G
    Phys Rev E; 2020 May; 101(5-1):052101. PubMed ID: 32575200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hysteretic dynamics of active particles in a periodic orienting field.
    Romensky M; Scholz D; Lobaskin V
    J R Soc Interface; 2015 Jul; 12(108):20150015. PubMed ID: 26040594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments.
    Bertrand T; Zhao Y; Bénichou O; Tailleur J; Voituriez R
    Phys Rev Lett; 2018 May; 120(19):198103. PubMed ID: 29799236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent properties of run-and-tumble particles: Density relaxation.
    Chakraborty T; Pradhan P
    Phys Rev E; 2024 Feb; 109(2-1):024124. PubMed ID: 38491605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic coupling melts acoustically levitated crystalline rafts.
    Wu B; VanSaders B; Lim MX; Jaeger HM
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2301625120. PubMed ID: 37428934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Selective Local Interactions with Memory: Motion on a 2D Lattice.
    Weinberg D; Levy D
    Physica D; 2014 Jun; 278-279():13-30. PubMed ID: 25045193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active mixtures in a narrow channel: motility diversity changes cluster sizes.
    de Castro P; Diles S; Soto R; Sollich P
    Soft Matter; 2021 Mar; 17(8):2050-2061. PubMed ID: 33475129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorbing phase transitions and dynamic freezing in running active matter systems.
    Reichhardt C; Olson Reichhardt CJ
    Soft Matter; 2014 Oct; 10(38):7502-10. PubMed ID: 25123498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.