These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34750642)

  • 1. Metabotypes of flavan-3-ol colonic metabolites after cranberry intake: elucidation and statistical approaches.
    Mena P; Favari C; Acharjee A; Chernbumroong S; Bresciani L; Curti C; Brighenti F; Heiss C; Rodriguez-Mateos A; Del Rio D
    Eur J Nutr; 2022 Apr; 61(3):1299-1317. PubMed ID: 34750642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling phenolic metabotypes in the frame of the COMBAT study, a randomized, controlled trial with cranberry supplementation.
    Tosi N; Favari C; Bresciani L; Flanagan E; Hornberger M; Narbad A; Del Rio D; Vauzour D; Mena P
    Food Res Int; 2023 Oct; 172():113187. PubMed ID: 37689939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes.
    Mena P; Ludwig IA; Tomatis VB; Acharjee A; Calani L; Rosi A; Brighenti F; Ray S; Griffin JL; Bluck LJ; Del Rio D
    Eur J Nutr; 2019 Jun; 58(4):1529-1543. PubMed ID: 29616322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the Gut Microbiota's Ability to Metabolize Oligomeric and Polymeric Flavan-3-ols from Aronia and Cranberry.
    Lessard-Lord J; Roussel C; Guay V; Desjardins Y
    Mol Nutr Food Res; 2024 Mar; 68(5):e2300641. PubMed ID: 38350729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic profile and urinary excretion of phenyl-γ-valerolactones upon consumption of cranberry: a dose-response relationship.
    Favari C; Mena P; Curti C; Istas G; Heiss C; Del Rio D; Rodriguez-Mateos A
    Food Funct; 2020 May; 11(5):3975-3985. PubMed ID: 32396592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity.
    Mena P; Bresciani L; Brindani N; Ludwig IA; Pereira-Caro G; Angelino D; Llorach R; Calani L; Brighenti F; Clifford MN; Gill CIR; Crozier A; Curti C; Del Rio D
    Nat Prod Rep; 2019 May; 36(5):714-752. PubMed ID: 30468210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro (poly)phenol catabolism of unformulated- and phytosome-formulated cranberry (Vaccinium macrocarpon) extracts.
    Bresciani L; Di Pede G; Favari C; Calani L; Francinelli V; Riva A; Petrangolini G; Allegrini P; Mena P; Del Rio D
    Food Res Int; 2021 Mar; 141():110137. PubMed ID: 33642004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Urinary Phenyl-γ-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples.
    Anesi A; Mena P; Bub A; Ulaszewska M; Del Rio D; Kulling SE; Mattivi F
    Metabolites; 2019 Oct; 9(11):. PubMed ID: 31671768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine.
    Brindani N; Mena P; Calani L; Benzie I; Choi SW; Brighenti F; Zanardi F; Curti C; Del Rio D
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28440064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the bioavailability of flavan-3-ols in humans: A systematic review and comprehensive data analysis.
    Di Pede G; Mena P; Bresciani L; Achour M; Lamuela-Raventós RM; Estruch R; Landberg R; Kulling SE; Wishart D; Rodriguez-Mateos A; Crozier A; Manach C; Del Rio D
    Mol Aspects Med; 2023 Feb; 89():101146. PubMed ID: 36207170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Urinary Phenyl-γ-Valerolactones as Biomarkers of Dietary Flavan-3-ol Exposure.
    Parmenter BH; Shinde S; Croft K; Murray K; Bondonno CP; Genoni A; Christophersen CT; Bindon K; Kay C; Mena P; Del Rio D; Hodgson JM; Bondonno NP
    J Nutr; 2023 Aug; 153(8):2193-2204. PubMed ID: 37394116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavan-3-ol-methylxanthine interactions: Modulation of flavan-3-ol bioavailability in volunteers with a functional colon and an ileostomy.
    Ottaviani JI; Fong RY; Borges G; Kimball J; Ensunsa JL; Medici V; Pourshahidi LK; Kane E; Ward K; Durkan R; Dobani S; Lawther R; O'Connor G; Gill CIR; Schroeter H; Crozier A
    Free Radic Biol Med; 2023 Feb; 196():1-8. PubMed ID: 36621554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts.
    Sánchez-Patán F; Tabasco R; Monagas M; Requena T; Peláez C; Moreno-Arribas MV; Bartolomé B
    J Agric Food Chem; 2012 Jul; 60(29):7142-51. PubMed ID: 22646528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Human Metabolism of Nuts Proanthocyanidins does not Reveal Urinary Metabolites Consistent with Distinctive Gut Microbiota Metabotypes.
    Cortés-Martín A; Selma MV; Espín JC; García-Villalba R
    Mol Nutr Food Res; 2019 Jan; 63(2):e1800819. PubMed ID: 30444059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites.
    Monagas M; Urpi-Sarda M; Sánchez-Patán F; Llorach R; Garrido I; Gómez-Cordovés C; Andres-Lacueva C; Bartolomé B
    Food Funct; 2010 Dec; 1(3):233-53. PubMed ID: 21776473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of dietary flavan-3-ol intakes with plasma phenyl-γ-valerolactones: analysis from the TUDA cohort of healthy older adults.
    Angelino D; Caffrey A; McNulty H; Gill CI; Mena P; Rosi A; Moore K; Hoey L; Clements M; Laird E; Boyd K; Mullen B; Pucci B; Jarrett H; Cunningham C; Ward M; Strain JJ; McCarroll K; Moore AJ; Molloy AM; Del Rio D
    Am J Clin Nutr; 2023 Aug; 118(2):476-484. PubMed ID: 37307990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function.
    Mele L; Carobbio S; Brindani N; Curti C; Rodriguez-Cuenca S; Bidault G; Mena P; Zanotti I; Vacca M; Vidal-Puig A; Del Rio D
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28276197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability and catabolism of green tea flavan-3-ols in humans.
    Del Rio D; Calani L; Cordero C; Salvatore S; Pellegrini N; Brighenti F
    Nutrition; 2010; 26(11-12):1110-6. PubMed ID: 20080030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial catabolism of procyanidins by human gut microbiota.
    Ou K; Sarnoski P; Schneider KR; Song K; Khoo C; Gu L
    Mol Nutr Food Res; 2014 Nov; 58(11):2196-205. PubMed ID: 25045165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-(3',4'-Dihydroxyphenyl)-γ-Valerolactone Is a Substrate for Human Paraoxonase: A Novel Pathway in Flavan-3-ol Metabolism.
    Momma TY; Kuhnle GGC; Fong RY; Ensunsa JL; Crozier A; Schroeter H; Ottaviani JI
    Mol Nutr Food Res; 2023 Sep; 67(17):e2300281. PubMed ID: 37423968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.