These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 34750782)

  • 1. Hemodynamic Study of a Patient-Specific Intracranial Aneurysm: Comparative Assessment of Tomographic PIV, Stereoscopic PIV, In Vivo MRI and Computational Fluid Dynamics.
    Wu X; Gürzing S; Schinkel C; Toussaint M; Perinajová R; van Ooij P; Kenjereš S
    Cardiovasc Eng Technol; 2022 Jun; 13(3):428-442. PubMed ID: 34750782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and Tomographic PIV.
    Medero R; Falk K; Rutkowski D; Johnson K; Roldán-Alzate A
    Ann Biomed Eng; 2020 Oct; 48(10):2484-2493. PubMed ID: 32524379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD.
    Roloff C; Stucht D; Beuing O; Berg P
    J Neurointerv Surg; 2019 Mar; 11(3):275-282. PubMed ID: 30061369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations - A review.
    Szajer J; Ho-Shon K
    Magn Reson Imaging; 2018 May; 48():62-69. PubMed ID: 29223732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm.
    van Ooij P; Potters WV; Guédon A; Schneiders JJ; Marquering HA; Majoie CB; vanBavel E; Nederveen AJ
    J Magn Reson Imaging; 2013 Oct; 38(4):876-84. PubMed ID: 23417769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of 4D-Flow MRI spatial resolution on patient-specific CFD simulations of the thoracic aorta.
    Cherry M; Khatir Z; Khan A; Bissell M
    Sci Rep; 2022 Sep; 12(1):15128. PubMed ID: 36068322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-Dimensional Magnetic Resonance Imaging Assessment of Intracranial Aneurysms: A State-of-the-Art Review.
    Castle-Kirszbaum M; Maingard J; Lim RP; Barras CD; Kok HK; Chandra RV; Chong W; Asadi H
    Neurosurgery; 2020 Sep; 87(3):453-465. PubMed ID: 32140714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haemodynamics in a patient-specific intracranial aneurysm according to experimental and numerical approaches: A comparison of PIV, CFD and PC-MRI.
    Li Y; Yoneyama Y; Isoda H; Terada M; Kosugi T; Kosugi T; Zhang M; Ohta M
    Technol Health Care; 2021; 29(2):253-267. PubMed ID: 32568138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of 4D Flow MRI and Particle Image Velocimetry Using an In Vitro Carotid Bifurcation Model.
    Medero R; Hoffman C; Roldán-Alzate A
    Ann Biomed Eng; 2018 Dec; 46(12):2112-2122. PubMed ID: 30112708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms.
    Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR
    Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of turbulent blood flow and wall shear stress in aortic coarctation using image-based simulations.
    Perinajová R; Juffermans JF; Mercado JL; Aben JP; Ledoux L; Westenberg JJM; Lamb HJ; Kenjereš S
    Biomed Eng Online; 2021 Aug; 20(1):84. PubMed ID: 34419047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-modality cerebral aneurysm haemodynamic analysis:
    Brindise MC; Rothenberger S; Dickerhoff B; Schnell S; Markl M; Saloner D; Rayz VL; Vlachos PP
    J R Soc Interface; 2019 Sep; 16(158):20190465. PubMed ID: 31506043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall Shear Stress Estimation for 4D Flow MRI Using Navier-Stokes Equation Correction.
    Zhang J; Rothenberger SM; Brindise MC; Markl M; Rayz VL; Vlachos PP
    Ann Biomed Eng; 2022 Dec; 50(12):1810-1825. PubMed ID: 35943617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional hemodynamics in intracranial aneurysms: influence of size and morphology.
    Schnell S; Ansari SA; Vakil P; Wasielewski M; Carr ML; Hurley MC; Bendok BR; Batjer H; Carroll TJ; Carr J; Markl M
    J Magn Reson Imaging; 2014 Jan; 39(1):120-31. PubMed ID: 24151067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas.
    Perinajová R; Juffermans JF; Westenberg JJM; van der Palen RLF; van den Boogaard PJ; Lamb HJ; Kenjereš S
    Comput Biol Med; 2021 Jun; 133():104385. PubMed ID: 33894502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Echo Particle Image Velocimetry for Estimation of Carotid Artery Wall Shear Stress: Repeatability, Reproducibility and Comparison with Phase-Contrast Magnetic Resonance Imaging.
    Gurung A; Gates PE; Mazzaro L; Fulford J; Zhang F; Barker AJ; Hertzberg J; Aizawa K; Strain WD; Elyas S; Shore AC; Shandas R
    Ultrasound Med Biol; 2017 Aug; 43(8):1618-1627. PubMed ID: 28501327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.