These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34750809)

  • 1. Imaging flow cytometry data analysis using convolutional neural network for quantitative investigation of phagocytosis.
    Mochalova EN; Kotov IA; Lifanov DA; Chakraborti S; Nikitin MP
    Biotechnol Bioeng; 2022 Feb; 119(2):626-635. PubMed ID: 34750809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Quantitative Analysis of Cell Targeting by Particle-Based Agents Using Imaging Flow Cytometry and Convolutional Neural Network.
    Mochalova EN; Kotov IA; Rozenberg JM; Nikitin MP
    Cytometry A; 2020 Mar; 97(3):279-287. PubMed ID: 31809002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image3C, a multimodal image-based and label-independent integrative method for single-cell analysis.
    Accorsi A; Box AC; Peuß R; Wood C; Sánchez Alvarado A; Rohner N
    Elife; 2021 Jul; 10():. PubMed ID: 34286692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages.
    Bratosin D; Mazurier J; Slomianny C; Aminoff D; Montreuil J
    Cytometry; 1997 Oct; 30(5):269-74. PubMed ID: 9383101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.
    Chlis NK; Rausch L; Brocker T; Kranich J; Theis FJ
    Nucleic Acids Res; 2020 Nov; 48(20):11335-11346. PubMed ID: 33119742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D visualization and quantitative analysis of human erythrocyte phagocytosis.
    Stachurska A; Król T; Trybus W; Szary K; Fabijańska-Mitek J
    Cell Biol Int; 2016 Nov; 40(11):1195-1203. PubMed ID: 27569596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of red cell and platelet morphology using an imaging-combined flow cytometer.
    Kubota F
    Clin Lab Haematol; 2003 Apr; 25(2):71-6. PubMed ID: 12641609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of SYTOX green dye in the flow cytometric analysis of bacterial phagocytosis.
    Gaforio JJ; Serrano MJ; Ortega E; Algarra I; Alvarez de Cienfuegos G
    Cytometry; 2002 Jun; 48(2):93-6. PubMed ID: 12116370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Segmentation of Meniscus in Multispectral MRI Using Regions with Convolutional Neural Network (R-CNN).
    Ölmez E; Akdoğan V; Korkmaz M; Er O
    J Digit Imaging; 2020 Aug; 33(4):916-929. PubMed ID: 32488659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of galectin-3 in phagocytosis by macrophages.
    Sano H; Hsu DK; Apgar JR; Yu L; Sharma BB; Kuwabara I; Izui S; Liu FT
    J Clin Invest; 2003 Aug; 112(3):389-97. PubMed ID: 12897206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes.
    Durant TJS; Olson EM; Schulz WL; Torres R
    Clin Chem; 2017 Dec; 63(12):1847-1855. PubMed ID: 28877918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-precision automatic identification method for dicentric chromosome images using two-stage convolutional neural network.
    Shen X; Ma T; Li C; Wen Z; Zheng J; Zhou Z
    Sci Rep; 2023 Feb; 13(1):2124. PubMed ID: 36746997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Analysis of Latex Beads Phagocytosis by Human Macrophages Using Imaging Flow Cytometry with Extended Depth of Field (EDF).
    Pavlova E; Shaposhnikova D; Petrichuk S; Radygina T; Erokhina M
    Methods Mol Biol; 2023; 2635():203-215. PubMed ID: 37074665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human peripheral blood leukocyte classification method based on convolutional neural network and data augmentation.
    Wang Y; Cao Y
    Med Phys; 2020 Jan; 47(1):142-151. PubMed ID: 31691975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Flow Cytometry Protocols for Examining Phagocytosis of Microplastics and Bioparticles by Immune Cells of Aquatic Animals.
    Park Y; Abihssira-García IS; Thalmann S; Wiegertjes GF; Barreda DR; Olsvik PA; Kiron V
    Front Immunol; 2020; 11():203. PubMed ID: 32133001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of feature-based ML and CNN for binucleated erythroblast quantification in myelodysplastic syndrome patients using imaging flow cytometry data.
    Rosenberg CA; Rodrigues MA; Bill M; Ludvigsen M
    Sci Rep; 2024 Apr; 14(1):9349. PubMed ID: 38654058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.