These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34750989)

  • 1. RENATE: A Pseudo-retrosynthetic Tool for Synthetically Accessible de novo Design.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    Mol Inform; 2022 Apr; 41(4):e2100207. PubMed ID: 34750989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAOMInext - Synthetically feasible fragment growing in a structure-based design context.
    Sommer K; Flachsenberg F; Rarey M
    Eur J Med Chem; 2019 Feb; 163():747-762. PubMed ID: 30576905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing reaction-based de novo design using a multi-label reaction class recommender.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    J Comput Aided Mol Des; 2020 Jul; 34(7):783-803. PubMed ID: 32112286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flux (1): a virtual synthesis scheme for fragment-based de novo design.
    Fechner U; Schneider G
    J Chem Inf Model; 2006; 46(2):699-707. PubMed ID: 16563000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Route Designer: a retrosynthetic analysis tool utilizing automated retrosynthetic rule generation.
    Law J; Zsoldos Z; Simon A; Reid D; Liu Y; Khew SY; Johnson AP; Major S; Wade RA; Ando HY
    J Chem Inf Model; 2009 Mar; 49(3):593-602. PubMed ID: 19434897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
    Schneider G; Lee ML; Stahl M; Schneider P
    J Comput Aided Mol Des; 2000 Jul; 14(5):487-94. PubMed ID: 10896320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LEADD: Lamarckian evolutionary algorithm for de novo drug design.
    Kerstjens A; De Winter H
    J Cheminform; 2022 Jan; 14(1):3. PubMed ID: 35033209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knowledge-based approach to de novo design using reaction vectors.
    Patel H; Bodkin MJ; Chen B; Gillet VJ
    J Chem Inf Model; 2009 May; 49(5):1163-84. PubMed ID: 19382767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BIBuilder: Exhaustive Searching for De Novo Ligands.
    Teodoro M; Muegge I
    Mol Inform; 2011 Jan; 30(1):63-75. PubMed ID: 27467878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FOG: Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space.
    Kutchukian PS; Lou D; Shakhnovich EI
    J Chem Inf Model; 2009 Jul; 49(7):1630-42. PubMed ID: 19527020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy between combinatorial chemistry and de novo design.
    Leach AR; Bryce RA; Robinson AJ
    J Mol Graph Model; 2000; 18(4-5):358-67, 526. PubMed ID: 11143555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SynthI: A New Open-Source Tool for Synthon-Based Library Design.
    Zabolotna Y; Volochnyuk DM; Ryabukhin SV; Gavrylenko K; Horvath D; Klimchuk O; Oksiuta O; Marcou G; Varnek A
    J Chem Inf Model; 2022 May; 62(9):2151-2163. PubMed ID: 34723532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second-generation de novo design: a view from a medicinal chemist perspective.
    Zaliani A; Boda K; Seidel T; Herwig A; Schwab CH; Gasteiger J; Claussen H; Lemmen C; Degen J; Pärn J; Rarey M
    J Comput Aided Mol Des; 2009 Aug; 23(8):593-602. PubMed ID: 19562260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistep Reaction Based De Novo Drug Design: Generating Synthetically Feasible Design Ideas.
    Masek BB; Baker DS; Dorfman RJ; DuBrucq K; Francis VC; Nagy S; Richey BL; Soltanshahi F
    J Chem Inf Model; 2016 Apr; 56(4):605-20. PubMed ID: 27031173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo design by pharmacophore-based searches in fragment spaces.
    Lippert T; Schulz-Gasch T; Roche O; Guba W; Rarey M
    J Comput Aided Mol Des; 2011 Oct; 25(10):931-45. PubMed ID: 21922280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DOGS: reaction-driven de novo design of bioactive compounds.
    Hartenfeller M; Zettl H; Walter M; Rupp M; Reisen F; Proschak E; Weggen S; Stark H; Schneider G
    PLoS Comput Biol; 2012; 8(2):e1002380. PubMed ID: 22359493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quest for novel chemical matter and the contribution of computer-aided de novo design.
    Pirard B
    Expert Opin Drug Discov; 2011 Mar; 6(3):225-31. PubMed ID: 22647201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.
    Baylon JL; Cilfone NA; Gulcher JR; Chittenden TW
    J Chem Inf Model; 2019 Feb; 59(2):673-688. PubMed ID: 30642173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.