These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 34751024)
1. Li Farina M; Duff BB; Tealdi C; Pugliese A; Blanc F; Quartarone E ACS Appl Mater Interfaces; 2021 Nov; 13(45):53986-53995. PubMed ID: 34751024 [TBL] [Abstract][Full Text] [Related]
2. Insight into the Isoreticularity of Li-MOFs for the Design of Low-Density Solid and Quasi-Solid Electrolytes. Butreddy P; Wijesingha M; Laws S; Pathiraja G; Mo Y; Rathnayake H Chem Mater; 2023 Dec; 35(23):9857-9878. PubMed ID: 38107191 [TBL] [Abstract][Full Text] [Related]
4. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries. Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124 [TBL] [Abstract][Full Text] [Related]
5. Toward High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties. Dong P; Zhang X; Hiscox W; Liu J; Zamora J; Li X; Su M; Zhang Q; Guo X; McCloy J; Song MK Adv Mater; 2023 Aug; 35(32):e2211841. PubMed ID: 37130704 [TBL] [Abstract][Full Text] [Related]
6. Extraordinary Ionic Conductivity Excited by Hierarchical Ion-Transport Pathways in MOF-Based Quasi-Solid Electrolytes. Liu H; Pan H; Yan M; Zhang X; Jiang Y Adv Mater; 2023 Jun; 35(26):e2300888. PubMed ID: 37005387 [TBL] [Abstract][Full Text] [Related]
7. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. Borodin O; Smith GD J Phys Chem B; 2009 Feb; 113(6):1763-76. PubMed ID: 19146427 [TBL] [Abstract][Full Text] [Related]
8. High-Performance Metal-Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries. Zhu F; Bao H; Wu X; Tao Y; Qin C; Su Z; Kang Z ACS Appl Mater Interfaces; 2019 Nov; 11(46):43206-43213. PubMed ID: 31651145 [TBL] [Abstract][Full Text] [Related]
9. Structural and Dynamic Insights into the Conduction of Lithium-Ionic-Liquid Mixtures in Nanoporous Metal-Organic Frameworks as Solid-State Electrolytes. Vazquez M; Liu M; Zhang Z; Chandresh A; Kanj AB; Wenzel W; Heinke L ACS Appl Mater Interfaces; 2021 May; 13(18):21166-21174. PubMed ID: 33905243 [TBL] [Abstract][Full Text] [Related]
10. Solvent-Solvent Interaction Mediated Lithium-Ion (De)intercalation Chemistry in Propylene Carbonate Based Electrolytes for Lithium-Sulfur Batteries. Liang H; Ma Z; Wang Y; Zhao F; Cao Z; Cavallo L; Li Q; Ming J ACS Nano; 2023 Sep; 17(18):18062-18073. PubMed ID: 37703060 [TBL] [Abstract][Full Text] [Related]
11. Highly Conductive Imidazolate Covalent Organic Frameworks with Ether Chains as Solid Electrolytes for Lithium Metal Batteries. Yuan Y; Zhang Z; Zhang Z; Bang KT; Tian Y; Dang Z; Gu M; Wang R; Tao R; Lu Y; Wang Y; Kim Y Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202402202. PubMed ID: 38375743 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Wu JF; Guo X Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013 [TBL] [Abstract][Full Text] [Related]
13. Engineering Functionalized 2D Metal-Organic Frameworks Nanosheets with Fast Li Xu L; Xiao X; Tu H; Zhu F; Wang J; Liu H; Huang W; Deng W; Hou H; Liu T; Ji X; Amine K; Zou G Adv Mater; 2023 Sep; 35(38):e2303193. PubMed ID: 37267091 [TBL] [Abstract][Full Text] [Related]
14. Significantly enhanced lithium-ion conductivity of solid-state electrolytes Wang X; Tian L; Tao F; Liu M; Jin S; Liu Z Dalton Trans; 2023 Jul; 52(29):10222-10230. PubMed ID: 37436096 [TBL] [Abstract][Full Text] [Related]
15. Exploring ionic liquid-laden metal-organic framework composite materials as hybrid electrolytes in metal (ion) batteries. Urgoiti-Rodriguez M; Vaquero-Vílchez S; Mirandona-Olaeta A; Fernández de Luis R; Goikolea E; Costa CM; Lanceros-Mendez S; Fidalgo-Marijuan A; Ruiz de Larramendi I Front Chem; 2022; 10():995063. PubMed ID: 36186579 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Free Li-Ion Mobility in Solid-State Electrolytes via Long-Range Assembly of Porous Materials. Kim GH; Jang J; Kang J ACS Appl Mater Interfaces; 2024 Jul; 16(28):36479-36488. PubMed ID: 38950001 [TBL] [Abstract][Full Text] [Related]
17. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. Ganesh P; Jiang DE; Kent PR J Phys Chem B; 2011 Mar; 115(12):3085-90. PubMed ID: 21384941 [TBL] [Abstract][Full Text] [Related]
18. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
19. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries. Wang X; Jin S; Liu Z Chem Commun (Camb); 2024 May; 60(41):5369-5390. PubMed ID: 38687504 [TBL] [Abstract][Full Text] [Related]
20. A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery. Wang Z; Tan R; Wang H; Yang L; Hu J; Chen H; Pan F Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29178151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]