These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 34751154)
1. Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. Yu Q; Wang Z; Wang G; Peijnenburg WJGM; Vijver MG Environ Pollut; 2022 Jan; 292(Pt B):118413. PubMed ID: 34751154 [TBL] [Abstract][Full Text] [Related]
2. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Xiao Y; Vijver MG; Chen G; Peijnenburg WJ Environ Sci Technol; 2015 Apr; 49(7):4657-64. PubMed ID: 25785366 [TBL] [Abstract][Full Text] [Related]
3. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Mwaanga P; Carraway ER; van den Hurk P Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms underlying the enhancement of toxicity caused by the coincubation of zinc oxide and copper nanoparticles in a fish hepatoma cell line. Hernández-Moreno D; Li L; Connolly M; Conde E; Fernández M; Schuster M; Navas JM; Fernández-Cruz ML Environ Toxicol Chem; 2016 Oct; 35(10):2562-2570. PubMed ID: 26970269 [TBL] [Abstract][Full Text] [Related]
5. Acute toxic effects caused by the co-exposure of nanoparticles of ZnO and Cu in rainbow trout. Hernández-Moreno D; Valdehita A; Conde E; Rucandio I; Navas JM; Fernández-Cruz ML Sci Total Environ; 2019 Oct; 687():24-33. PubMed ID: 31202010 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. Xiao Y; Peijnenburg WJ; Chen G; Vijver MG Sci Total Environ; 2016 Sep; 563-564():81-8. PubMed ID: 27135569 [TBL] [Abstract][Full Text] [Related]
7. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Li L; Fernández-Cruz ML; Connolly M; Conde E; Fernández M; Schuster M; Navas JM Sci Total Environ; 2015 Feb; 505():253-60. PubMed ID: 25461026 [TBL] [Abstract][Full Text] [Related]
8. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Cupi D; Hartmann NB; Baun A Environ Toxicol Chem; 2015 Mar; 34(3):497-506. PubMed ID: 25546145 [TBL] [Abstract][Full Text] [Related]
9. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. Adam N; Vergauwen L; Blust R; Knapen D Environ Res; 2015 Apr; 138():82-92. PubMed ID: 25704829 [TBL] [Abstract][Full Text] [Related]
10. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria. Zhang H; Shi J; Su Y; Li W; Wilkinson KJ; Xie B Environ Monit Assess; 2020 Jul; 192(8):484. PubMed ID: 32617676 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the Combined Toxicity of Cu and ZnO Nanoparticles: Utility of the Concept of Additivity and a Nested Experimental Design. Liu Y; Baas J; Peijnenburg WJ; Vijver MG Environ Sci Technol; 2016 May; 50(10):5328-37. PubMed ID: 27070131 [TBL] [Abstract][Full Text] [Related]
12. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Adam N; Leroux F; Knapen D; Bals S; Blust R Water Res; 2015 Jan; 68():249-61. PubMed ID: 25462733 [TBL] [Abstract][Full Text] [Related]
13. Time-Dependent Toxicity Responses in Daphnia magna Exposed to CuO and ZnO Nanoparticles. Kim S; Samanta P; Yoo J; Kim WK; Jung J Bull Environ Contam Toxicol; 2017 Apr; 98(4):502-507. PubMed ID: 28078368 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Ye N; Wang Z; Wang S; Peijnenburg WJGM Nanotoxicology; 2018 Jun; 12(5):423-438. PubMed ID: 29658385 [TBL] [Abstract][Full Text] [Related]
15. Aggregation behavior of zinc oxide nanoparticles and their biotoxicity to Daphnia magna: Influence of humic acid and sodium alginate. Dai H; Sun T; Han T; Guo Z; Wang X; Chen Y Environ Res; 2020 Dec; 191():110086. PubMed ID: 32846168 [TBL] [Abstract][Full Text] [Related]
16. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Adam N; Leroux F; Knapen D; Bals S; Blust R Environ Pollut; 2014 Nov; 194():130-137. PubMed ID: 25108488 [TBL] [Abstract][Full Text] [Related]
17. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves. Traudt EM; Ranville JF; Smith SA; Meyer JS Environ Toxicol Chem; 2016 Jul; 35(7):1843-51. PubMed ID: 26681657 [TBL] [Abstract][Full Text] [Related]
18. Aging of nanosized titanium dioxide modulates the effects of dietary copper exposure on Daphnia magna - an assessment over two generations. Roy R; Kempter L; Philippe A; Bollinger E; Grünling L; Sivagnanam M; Meyer F; Feckler A; Seitz F; Schulz R; Bundschuh M Ecotoxicol Environ Saf; 2024 Mar; 272():116031. PubMed ID: 38309236 [TBL] [Abstract][Full Text] [Related]
19. Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae. Yang L; Wang WX Environ Pollut; 2019 Jun; 249():116-124. PubMed ID: 30884390 [TBL] [Abstract][Full Text] [Related]
20. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna. Meyer JS; Ranville JF; Pontasch M; Gorsuch JW; Adams WJ Environ Toxicol Chem; 2015 Apr; 34(4):799-808. PubMed ID: 25336231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]