These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34751280)

  • 1. Precise size control of hydrophobic gold nanoparticles in the 2-5 nm range.
    Goldmann C; Moretti C; Mahler B; Abécassis B; Impéror-Clerc M; Pansu B
    Chem Commun (Camb); 2021 Nov; 57(93):12512-12515. PubMed ID: 34751280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insights into seeded growth processes of gold nanoparticles.
    Polte J; Herder M; Erler R; Rolf S; Fischer A; Würth C; Thünemann AF; Kraehnert R; Emmerling F
    Nanoscale; 2010 Nov; 2(11):2463-9. PubMed ID: 20877899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Optical Properties of Encapsulated Clusters of Gold Nanoparticles through Stimuli-Triggered Controlled Aggregation.
    Dergunov SA; Kim MD; Shmakov SN; Richter AG; Weigand S; Pinkhassik E
    Chemistry; 2016 Jun; 22(23):7702-5. PubMed ID: 27159384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly.
    Martin MN; Basham JI; Chando P; Eah SK
    Langmuir; 2010 May; 26(10):7410-7. PubMed ID: 20392108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Characterization of Gold Nanoparticles in the Presence of Citrate and Soybean Seed Extract in an Acidic Conditions.
    Izadi E; Rasooli A; Akbarzadeh A; Davaran S
    Drug Res (Stuttg); 2017 May; 67(5):266-270. PubMed ID: 28561220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed-mediated synthesis of gold tetrahedra in high purity and with tunable, well-controlled sizes.
    Zheng Y; Liu W; Lv T; Luo M; Hu H; Lu P; Choi SI; Zhang C; Tao J; Zhu Y; Li ZY; Xia Y
    Chem Asian J; 2014 Sep; 9(9):2635-40. PubMed ID: 24976486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals.
    Kumara C; Zuo X; Cullen DA; Dass A
    ACS Nano; 2014 Jun; 8(6):6431-9. PubMed ID: 24813022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of monomer feeding on a fast gold nanoparticles synthesis: time-resolved XANES and SAXS experiments.
    Abécassis B; Testard F; Kong Q; Francois B; Spalla O
    Langmuir; 2010 Sep; 26(17):13847-54. PubMed ID: 20704344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The size distribution of 'gold standard' nanoparticles.
    Bienert R; Emmerling F; Thünemann AF
    Anal Bioanal Chem; 2009 Nov; 395(6):1651-60. PubMed ID: 19756546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological synthesis of gold nanocubes from Bacillus licheniformis.
    Kalishwaralal K; Deepak V; Ram Kumar Pandian S; Gurunathan S
    Bioresour Technol; 2009 Nov; 100(21):5356-8. PubMed ID: 19574037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.
    Baker MAB; Tuckwell AJ; Berengut JF; Bath J; Benn F; Duff AP; Whitten AE; Dunn KE; Hynson RM; Turberfield AJ; Lee LK
    ACS Nano; 2018 Jun; 12(6):5791-5799. PubMed ID: 29812934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled assembly of gold nanoparticles through antibody recognition: study and utilizing the effect of particle size on interparticle distance.
    Zhou G; Liu Y; Luo M; Li X; Xu Q; Ji X; He Z
    Langmuir; 2013 Apr; 29(15):4697-702. PubMed ID: 23521495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultimate size control of encapsulated gold nanoparticles.
    Li S; Burel L; Aquino C; Tuel A; Morfin F; Rousset JL; Farrusseng D
    Chem Commun (Camb); 2013 Oct; 49(76):8507-9. PubMed ID: 23942629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Placement of alkanethiol-capped Au nanoparticles using organic solvents.
    Yim TJ; Choi H; Zhang X
    J Colloid Interface Sci; 2010 Jun; 346(1):17-22. PubMed ID: 20332051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels.
    Jun H; Fabienne T; Florent M; Coulon PE; Nicolas M; Olivier S
    Langmuir; 2012 Nov; 28(45):15966-74. PubMed ID: 23116539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seed-mediated synthesis of gold octahedra in high purity and with well-controlled sizes and optical properties.
    Kim DY; Li W; Ma Y; Yu T; Li ZY; Park OO; Xia Y
    Chemistry; 2011 Apr; 17(17):4759-64. PubMed ID: 21416517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates.
    Lukman AI; Gong B; Marjo CE; Roessner U; Harris AT
    J Colloid Interface Sci; 2011 Jan; 353(2):433-44. PubMed ID: 20974473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.
    Aswathy Aromal S; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1-5. PubMed ID: 22743607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters.
    Choi J; Park S; Stojanović Z; Han HS; Lee J; Seok HK; Uskoković D; Lee KH
    Langmuir; 2013 Dec; 29(50):15698-703. PubMed ID: 24283573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.
    Chhabra R; Moralez JG; Raez J; Yamazaki T; Cho JY; Myles AJ; Kovalenko A; Fenniri H
    J Am Chem Soc; 2010 Jan; 132(1):32-3. PubMed ID: 20000320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.