These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34751290)
21. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844 [TBL] [Abstract][Full Text] [Related]
22. Macrotransport of active particles in periodic channels and fields: Rectification and dispersion. Peng Z J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404215 [TBL] [Abstract][Full Text] [Related]
23. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles. Nandi SK; Gov NS Soft Matter; 2017 Oct; 13(41):7609-7616. PubMed ID: 29028064 [TBL] [Abstract][Full Text] [Related]
24. Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels. Pattanayak S; Das R; Kumar M; Mishra S Eur Phys J E Soft Matter; 2019 May; 42(5):62. PubMed ID: 31115728 [TBL] [Abstract][Full Text] [Related]
25. Brownian motion of a self-propelled particle. ten Hagen B; van Teeffelen S; Löwen H J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563 [TBL] [Abstract][Full Text] [Related]
26. Loopy Lévy flights enhance tracer diffusion in active suspensions. Kanazawa K; Sano TG; Cairoli A; Baule A Nature; 2020 Mar; 579(7799):364-367. PubMed ID: 32188948 [TBL] [Abstract][Full Text] [Related]
27. Dynamic shapes of floppy vesicles enclosing active Brownian particles with membrane adhesion. Iyer P; Gompper G; Fedosov DA Soft Matter; 2023 May; 19(19):3436-3449. PubMed ID: 37132446 [TBL] [Abstract][Full Text] [Related]
28. Mode-coupling theory for the steady-state dynamics of active Brownian particles. Szamel G J Chem Phys; 2019 Mar; 150(12):124901. PubMed ID: 30927902 [TBL] [Abstract][Full Text] [Related]
29. Brownian dynamics of a self-propelled particle in shear flow. ten Hagen B; Wittkowski R; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031105. PubMed ID: 22060326 [TBL] [Abstract][Full Text] [Related]
30. Tagged-particle dynamics in a hard-sphere system: mode-coupling theory analysis. Voigtmann T; Puertas AM; Fuchs M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061506. PubMed ID: 15697373 [TBL] [Abstract][Full Text] [Related]
31. The coherent motions of thermal active Brownian particles. Yang C; Zeng Y; Xu S; Zhou X Phys Chem Chem Phys; 2023 May; 25(18):13027-13032. PubMed ID: 37114336 [TBL] [Abstract][Full Text] [Related]
32. Work fluctuation relation of an active Brownian particle in a viscoelastic fluid. Narinder N; Paul S; Bechinger C Phys Rev E; 2021 Sep; 104(3-1):034605. PubMed ID: 34654101 [TBL] [Abstract][Full Text] [Related]
33. Survival of interacting Brownian particles in crowded one-dimensional environment. Ryabov A; Chvosta P J Chem Phys; 2012 Feb; 136(6):064114. PubMed ID: 22360176 [TBL] [Abstract][Full Text] [Related]
34. Active Brownian motion with memory delay induced by a viscoelastic medium. Sprenger AR; Bair C; Löwen H Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653 [TBL] [Abstract][Full Text] [Related]
35. Persistent motion of a Brownian particle subject to repulsive feedback with time delay. Kopp RA; Klapp SHL Phys Rev E; 2023 Feb; 107(2-1):024611. PubMed ID: 36932532 [TBL] [Abstract][Full Text] [Related]
36. Virial pressure in systems of spherical active Brownian particles. Winkler RG; Wysocki A; Gompper G Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908 [TBL] [Abstract][Full Text] [Related]
37. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions. Alarcón F; Valeriani C; Pagonabarraga I Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850 [TBL] [Abstract][Full Text] [Related]
38. Mode-coupling theory for the dynamics of dense underdamped active Brownian particle system. Feng M; Hou Z J Chem Phys; 2023 Jan; 158(2):024102. PubMed ID: 36641396 [TBL] [Abstract][Full Text] [Related]
39. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation. Weysser F; Puertas AM; Fuchs M; Voigtmann T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622 [TBL] [Abstract][Full Text] [Related]
40. Dynamics of interacting Brownian particles: a diagrammatic formulation. Szamel G J Chem Phys; 2007 Aug; 127(8):084515. PubMed ID: 17764277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]