BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34751831)

  • 1. Modeling the environmental, health, and safety aspects of xylene isomer emission from storage tanks in petrochemical industries, Iran.
    Shojaee Barjoee S; Dashtian AH; Keykhosravi SS; Abbasi Saryazdi MJ; Afrough MJ
    Environ Monit Assess; 2021 Nov; 193(12):783. PubMed ID: 34751831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hazards of toluene storage tanks in a petrochemical plant: modeling effects, consequence analysis, and comparison of two modeling programs.
    Barjoee SS; Elmi MR; Varaoon VT; Keykhosravi SS; Karimi F
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):4587-4615. PubMed ID: 34414542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of numerical calculations and ALOHA modeling in consequence assessment of chlorine gas emissions from ethylene dichloride reactors.
    Chehrazi D; Davami AH; Kazemi R; Yengejeh RJ
    Environ Monit Assess; 2024 May; 196(6):553. PubMed ID: 38758240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic liquids storage tanks volatile organic compounds (VOCS) emissions dispersion and risk assessment in developing countries: the case of Dar-es-Salaam City, Tanzania.
    Jackson MM
    Environ Monit Assess; 2006 May; 116(1-3):363-82. PubMed ID: 16779602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible preferential metabolism of xylene isomers following occupational exposure to mixed xylenes.
    Miller MJ; Edwards JW
    Int Arch Occup Environ Health; 1999 Mar; 72(2):89-97. PubMed ID: 10197480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emission characteristics of VOCs from three fixed-roof p-xylene liquid storage tanks.
    Lu C; Huang H; Chang S; Hsu S
    Environ Monit Assess; 2013 Aug; 185(8):6819-30. PubMed ID: 23307101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urinary methylhippuric acid isomer levels after occupational exposure to a xylene mixture.
    Kawai T; Mizunuma K; Yasugi T; Horiguchi S; Uchida Y; Iwami O; Iguchi H; Ikeda M
    Int Arch Occup Environ Health; 1991; 63(1):69-75. PubMed ID: 1856026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flammable Substances in Korea Considering the Domino Effect: Assessment of Safety Distance.
    Lee HE; Yoon SJ; Sohn JR; Huh DA; Lee BW; Moon KW
    Int J Environ Res Public Health; 2019 Mar; 16(6):. PubMed ID: 30889859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of workers' exposure to xylene in a pesticide production factory.
    Mohammadyan M; Baharfar Y
    Int J Occup Environ Health; 2015; 21(2):121-6. PubMed ID: 25487643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental Risk Assessment Using Neural Network in Liquefied Petroleum Gas Terminal.
    Gabhane LR; Kanidarapu N
    Toxics; 2023 Apr; 11(4):. PubMed ID: 37112575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of airborne exposure to volatile organic compounds of benzene, toluene, xylene, and ethylbenzene and its relationship to biological contact index in the workers of a petrochemical plant in the west of Iran.
    Rashnuodi P; Dehaghi BF; Rangkooy HA; Amiri A; Mohi Poor S
    Environ Monit Assess; 2021 Jan; 193(2):94. PubMed ID: 33507416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal distribution, behaviour and reactivities of BTEX compounds in a suburban Atlantic area during a year.
    Pérez-Rial D; López-Mahía P; Muniategui-Lorenzo S; Prada-Rodríguez D
    J Environ Monit; 2009 Jun; 11(6):1216-25. PubMed ID: 19513453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental behavior and eco-toxicity of xylene in aquatic environments: A review.
    Duan W; Meng F; Wang F; Liu Q
    Ecotoxicol Environ Saf; 2017 Nov; 145():324-332. PubMed ID: 28756253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].
    Li J; Wang MY; Zhang J; He WQ; Nie L; Shao X
    Huan Jing Ke Xue; 2013 Dec; 34(12):4718-23. PubMed ID: 24640914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.
    Kim KJ; Kim HJ; Khalekuzzaman M; Yoo EH; Jung HH; Jang HS
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6149-58. PubMed ID: 26797953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-vapor sorption of xylenes: prioritized selectivity as a means of separating all three isomers using a single substrate.
    Lusi M; Barbour LJ
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3928-31. PubMed ID: 22411768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological monitoring of low level occupational xylene exposure and the role of recent exposure.
    Jacobson GA; McLean S
    Ann Occup Hyg; 2003 Jun; 47(4):331-6. PubMed ID: 12765874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison and application of biofilter and suspended bioreactor in removing gaseous o-xylene.
    Li L; Chai F; Liang C; Wang Y; Zhang X; Yang K; Xiao B
    Environ Res; 2020 Sep; 188():109853. PubMed ID: 32846642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Flux High-Selectivity Metal-Organic Framework MIL-160 Membrane for Xylene Isomer Separation by Pervaporation.
    Wu X; Wei W; Jiang J; Caro J; Huang A
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15354-15358. PubMed ID: 30248220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures.
    Kim HJ; Yoon JW; Choi KI; Jang HW; Umar A; Lee JH
    Nanoscale; 2013 Aug; 5(15):7066-73. PubMed ID: 23807747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.