These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34751854)

  • 1. Learning the local landscape of protein structures with convolutional neural networks.
    Kulikova AV; Diaz DJ; Loy JM; Ellington AD; Wilke CO
    J Biol Phys; 2021 Dec; 47(4):435-454. PubMed ID: 34751854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D deep convolutional neural networks for amino acid environment similarity analysis.
    Torng W; Altman RB
    BMC Bioinformatics; 2017 Jun; 18(1):302. PubMed ID: 28615003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures.
    Lategan FA; Schreiber C; Patterton HG
    BMC Bioinformatics; 2023 Oct; 24(1):373. PubMed ID: 37789284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProDCoNN: Protein design using a convolutional neural network.
    Zhang Y; Chen Y; Wang C; Lo CC; Liu X; Wu W; Zhang J
    Proteins; 2020 Jul; 88(7):819-829. PubMed ID: 31867753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning the shape of protein microenvironments with a holographic convolutional neural network.
    Pun MN; Ivanov A; Bellamy Q; Montague Z; LaMont C; Bradley P; Otwinowski J; Nourmohammad A
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2300838121. PubMed ID: 38300863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two sequence- and two structure-based ML models have learned different aspects of protein biochemistry.
    Kulikova AV; Diaz DJ; Chen T; Cole TJ; Ellington AD; Wilke CO
    Sci Rep; 2023 Aug; 13(1):13280. PubMed ID: 37587128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation.
    Golinski AW; Schmitz ZD; Nielsen GH; Johnson B; Saha D; Appiah S; Hackel BJ; Martiniani S
    ACS Synth Biol; 2023 Sep; 12(9):2600-2615. PubMed ID: 37642646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of mono- and di-nucleotide-specific DNA-binding sites in proteins using neural networks.
    Andrabi M; Mizuguchi K; Sarai A; Ahmad S
    BMC Struct Biol; 2009 May; 9():30. PubMed ID: 19439068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks.
    Helles G; Fonseca R
    BMC Bioinformatics; 2009 Oct; 10():338. PubMed ID: 19835576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using machine learning to predict the effects and consequences of mutations in proteins.
    Diaz DJ; Kulikova AV; Ellington AD; Wilke CO
    Curr Opin Struct Biol; 2023 Feb; 78():102518. PubMed ID: 36603229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mCNN-ETC: identifying electron transporters and their functional families by using multiple windows scanning techniques in convolutional neural networks with evolutionary information of protein sequences.
    Ho QT; Le NQK; Ou YY
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using multiple convolutional window scanning of convolutional neural network for an efficient prediction of ATP-binding sites in transport proteins.
    Nguyen TT; Chen S; Ho QT; Ou YY
    Proteins; 2022 Jul; 90(7):1486-1492. PubMed ID: 35246878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotype sampling for deep-learning assisted experimental mapping of a combinatorially complete fitness landscape.
    Wagner A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38745436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction.
    Cretin G; Galochkina T; de Brevern AG; Gelly JC
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Deep Neural Network ProSPr for Accurate Protein Distance Predictions on CASP14 Targets.
    Stern J; Hedelius B; Fisher O; Billings WM; Della Corte D
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling full-length evolutionary profiles based deep convolutional neural network for predicting DNA-binding proteins from sequence.
    Chauhan S; Ahmad S
    Proteins; 2020 Jan; 88(1):15-30. PubMed ID: 31228283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein interaction prediction based on ordinal regression and recurrent convolutional neural networks.
    Xu W; Gao Y; Wang Y; Guan J
    BMC Bioinformatics; 2021 Oct; 22(Suppl 6):485. PubMed ID: 34625020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction.
    Görmez Y; Sabzekar M; Aydın Z
    Proteins; 2021 Oct; 89(10):1277-1288. PubMed ID: 33993559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.