These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 34752637)
1. Generation and characterization of air micro-bubbles in highly hydrophobic capillaries. Renard C; Leclercq L; Cottet H Electrophoresis; 2022 Mar; 43(5-6):767-775. PubMed ID: 34752637 [TBL] [Abstract][Full Text] [Related]
2. Inline imaging reveals evolution of the size distribution and the concentration of microbubbles in dissolved air flotation. Schmideder S; Thurin L; Kaur G; Briesen H Water Res; 2022 Oct; 224():119027. PubMed ID: 36099759 [TBL] [Abstract][Full Text] [Related]
3. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions. Shi C; Cui X; Zhang X; Tchoukov P; Liu Q; Encinas N; Paven M; Geyer F; Vollmer D; Xu Z; Butt HJ; Zeng H Langmuir; 2015 Jul; 31(26):7317-27. PubMed ID: 26065326 [TBL] [Abstract][Full Text] [Related]
4. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions. Kang ST; Huang YL; Yeh CK Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748 [TBL] [Abstract][Full Text] [Related]
5. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry. Tuziuti T; Yasui K; Sivakumar M; Iida Y Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of microbubble removal in an airtrap with a free surface interface. Keshavarzi G; Simmons A; Yeoh G; Barber T J Biomech; 2015 May; 48(7):1237-40. PubMed ID: 25841295 [TBL] [Abstract][Full Text] [Related]
7. Forced linear oscillations of microbubbles in blood capillaries. Sassaroli E; Hynynen K J Acoust Soc Am; 2004 Jun; 115(6):3235-43. PubMed ID: 15237848 [TBL] [Abstract][Full Text] [Related]
8. Effects of Gas Type, Oil, Salts and Detergent on Formation and Stability of Air and Carbon Dioxide Bubbles Produced by Using a Nanobubble Generator. Zhou K; Maugard V; Zhang W; Zhou J; Zhang X Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177046 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery. Filho WD; Schneider FK; Morales RE Biomed Eng Online; 2012 Sep; 11():71. PubMed ID: 22995578 [TBL] [Abstract][Full Text] [Related]
10. Circumventing air bubbles in microfluidic systems and quantitative continuous-flow PCR applications. Nakayama T; Kurosawa Y; Furui S; Kerman K; Kobayashi M; Rao SR; Yonezawa Y; Nakano K; Hino A; Yamamura S; Takamura Y; Tamiya E Anal Bioanal Chem; 2006 Nov; 386(5):1327-33. PubMed ID: 16896609 [TBL] [Abstract][Full Text] [Related]
11. Standing Air Bubble-Based Micro-Hydraulic Capacitors for Flow Stabilization in Syringe Pump-Driven Systems. Zhou Y; Liu J; Yan J; Zhu T; Guo S; Li S; Li T Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290176 [TBL] [Abstract][Full Text] [Related]
12. In-situ synchrotron X-ray imaging of ultrasound (US)-generated bubbles: Influence of US frequency on microbubble cavitation for membrane fouling remediation. Ehsani M; Zhu N; Doan H; Lohi A; Abdelrasoul A Ultrason Sonochem; 2021 Sep; 77():105697. PubMed ID: 34388491 [TBL] [Abstract][Full Text] [Related]
13. Development of air micro bubbles in the venous outlet line: an in vitro analysis of various air traps used for hemodialysis. Stegmayr CJ; Jonsson P; Forsberg U; Stegmayr BG Artif Organs; 2007 Jun; 31(6):483-8. PubMed ID: 17537063 [TBL] [Abstract][Full Text] [Related]
14. External electric field control of electroosmotic flow in non-coated and coated fused-silica capillaries and its application for capillary electrophoretic separations of peptides. Kasicka V; Prusík Z; Sázelová P; Chiari M; Miksík I; Deyl Z J Chromatogr B Biomed Sci Appl; 2000 Apr; 741(1):43-54. PubMed ID: 10839131 [TBL] [Abstract][Full Text] [Related]
15. Optical observations of acoustical radiation force effects on individual air bubbles. Palanchon P; Tortoli P; Bouakaz A; Versluis M; de Jong N IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):104-10. PubMed ID: 15742566 [TBL] [Abstract][Full Text] [Related]
16. Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system. Zhang M; Guiraud P Water Res; 2017 Dec; 126():399-410. PubMed ID: 28987891 [TBL] [Abstract][Full Text] [Related]
17. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing. Parhizkar M; Stride E; Edirisinghe M Lab Chip; 2014 Jul; 14(14):2437-46. PubMed ID: 24837066 [TBL] [Abstract][Full Text] [Related]
18. Study on the bubble transport mechanism in an acoustic standing wave field. Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064 [TBL] [Abstract][Full Text] [Related]
19. The sensor in the venous chamber does not prevent passage of air bubbles during hemodialysis. Stegmayr B; Forsberg U; Jonsson P; Stegmayr C Artif Organs; 2007 Feb; 31(2):162-6. PubMed ID: 17298408 [TBL] [Abstract][Full Text] [Related]
20. Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. Kim Y; Ding H; Zheng Y Nano Lett; 2020 Oct; 20(10):7020-7027. PubMed ID: 32667815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]