These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34752980)
1. Engineering cobalt nitride nanosheet arrays with rich nitrogen defects as a bifunctional robust oxygen electrocatalyst in rechargeable Zn-air batteries. Hu Y; Guo M; Hu C; Dong J; Yan P; Taylor Isimjan T; Yang X J Colloid Interface Sci; 2022 Feb; 608(Pt 2):2066-2074. PubMed ID: 34752980 [TBL] [Abstract][Full Text] [Related]
2. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries. Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530 [TBL] [Abstract][Full Text] [Related]
3. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis. Wu X; Han X; Ma X; Zhang W; Deng Y; Zhong C; Hu W ACS Appl Mater Interfaces; 2017 Apr; 9(14):12574-12583. PubMed ID: 28319373 [TBL] [Abstract][Full Text] [Related]
4. Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. Shinde SS; Lee CH; Sami A; Kim DH; Lee SU; Lee JH ACS Nano; 2017 Jan; 11(1):347-357. PubMed ID: 28001038 [TBL] [Abstract][Full Text] [Related]
5. Cobalt-Based Metal-Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chen G; Zhang J; Wang F; Wang L; Liao Z; Zschech E; Müllen K; Feng X Chemistry; 2018 Dec; 24(69):18413-18418. PubMed ID: 30192997 [TBL] [Abstract][Full Text] [Related]
6. Defect-Engineered Co Tang W; Teng K; Guo W; Gu F; Li B; Qi R; Liu R; Lin Y; Wu M; Chen Y Small; 2022 Jul; 18(27):e2202194. PubMed ID: 35665997 [TBL] [Abstract][Full Text] [Related]
7. Cobalt Nanoparticles Embedded into Nitrogen-doped Graphene with Abundant Macropores as a Bifunctional Electrocatalyst for Rechargeable Zinc-air Batteries. Wang H; Chen X; Sun T; Li Y; Lv X; Li Y; Wang HG Chem Asian J; 2022 Aug; 17(15):e202200390. PubMed ID: 35582772 [TBL] [Abstract][Full Text] [Related]
8. General and Facile Synthesis of Co/CoO Nanoparticals Supported by Nitrogen-Doped Graphenic Networks as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Tian X; Xu M; Ma X; Mu G; Xiao J; Wang S ChemSusChem; 2024 Sep; 17(18):e202400570. PubMed ID: 38610068 [TBL] [Abstract][Full Text] [Related]
9. A ΔE = 0.63 V Bifunctional Oxygen Electrocatalyst Enables High-Rate and Long-Cycling Zinc-Air Batteries. Zhao CX; Liu JN; Wang J; Ren D; Yu J; Chen X; Li BQ; Zhang Q Adv Mater; 2021 Apr; 33(15):e2008606. PubMed ID: 33656780 [TBL] [Abstract][Full Text] [Related]
10. Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn-Air Batteries. Zhang H; Zhao M; Liu H; Shi S; Wang Z; Zhang B; Song L; Shang J; Yang Y; Ma C; Zheng L; Han Y; Huang W Nano Lett; 2021 Mar; 21(5):2255-2264. PubMed ID: 33599511 [TBL] [Abstract][Full Text] [Related]
11. Engineering of heterointerface of ultrathin carbon nanosheet-supported CoN/MnO enhances oxygen electrocatalysis for rechargeable Zn-air batteries. Niu Y; Jiang G; Gong S; Liu X; Shangguan E; Li L; Chen Z J Colloid Interface Sci; 2024 Feb; 656():346-357. PubMed ID: 37995404 [TBL] [Abstract][Full Text] [Related]
12. Cobalt Phthalocyanine-Doped Polymer-Based Electrocatalyst for Rechargeable Zinc-Air Batteries. Kumar Y; Akula S; Kibena-Põldsepp E; Käärik M; Kozlova J; Kikas A; Aruväli J; Kisand V; Leis J; Tamm A; Tammeveski K Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512381 [TBL] [Abstract][Full Text] [Related]
13. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi Chen K; Kim S; Rajendiran R; Prabakar K; Li G; Shi Z; Jeong C; Kang J; Li OL J Colloid Interface Sci; 2021 Jan; 582(Pt B):977-990. PubMed ID: 32927178 [TBL] [Abstract][Full Text] [Related]
14. Highly Dispersed Co-, N-, S-Doped Topological Defect-Rich Hollow Carbon Nanoboxes as Superior Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Wang M; Cao L; Du X; Zhang Y; Jin F; Zhang M; Li Z; Su K ACS Appl Mater Interfaces; 2022 Jun; 14(22):25427-25438. PubMed ID: 35621374 [TBL] [Abstract][Full Text] [Related]
15. Co(II)1-xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries. Wang Z; Xiao S; An Y; Long X; Zheng X; Lu X; Tong Y; Yang S ACS Appl Mater Interfaces; 2016 Jun; 8(21):13348-59. PubMed ID: 27163673 [TBL] [Abstract][Full Text] [Related]
16. Interfacial Engineering of CoN/Co Zhou Q; Zhang S; Zhou G; Pang H; Zhang M; Xu L; Sun K; Tang Y; Huang K Small; 2023 Jul; 19(28):e2301324. PubMed ID: 37005337 [TBL] [Abstract][Full Text] [Related]
17. Ni Cui Z; Fu G; Li Y; Goodenough JB Angew Chem Int Ed Engl; 2017 Aug; 56(33):9901-9905. PubMed ID: 28666066 [TBL] [Abstract][Full Text] [Related]
18. In situ produced Co Sun RM; Zhang L; Feng JJ; Fang KM; Wang AJ J Colloid Interface Sci; 2022 Feb; 608(Pt 2):2100-2110. PubMed ID: 34763290 [TBL] [Abstract][Full Text] [Related]
19. Atomic layer deposited nickel sulfide for bifunctional oxygen evolution/reduction electrocatalysis and zinc-air batteries. Yan S; Li H; Zhu J; Xiong W; Lei R; Wang X Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33770782 [TBL] [Abstract][Full Text] [Related]
20. A hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheet system as a superior oxygen electrocatalyst for rechargeable Zn-air batteries. Niu WJ; He JZ; Wang YP; Sun QQ; Liu WW; Zhang LY; Liu MC; Liu MJ; Chueh YL Nanoscale; 2020 Oct; 12(38):19644-19654. PubMed ID: 32966500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]