These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34753454)

  • 1. Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study.
    Wang J; Lv Y; Wang J; Ma F; Du Y; Fan X; Wang M; Ke J
    BMC Med Imaging; 2021 Nov; 21(1):166. PubMed ID: 34753454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of 3D U-net in automatic segmentation of middle ear surgery structures in temporal bone CT].
    Ke J; Lv Y; DU Y; Wang J; Wang J; Sun S; Ma F
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Oct; 34(10):870-873. PubMed ID: 33254288
    [No Abstract]   [Full Text] [Related]  

  • 3. Automatic segmentation of temporal bone structures from clinical conventional CT using a CNN approach.
    Lv Y; Ke J; Xu Y; Shen Y; Wang J; Wang J
    Int J Med Robot; 2021 Apr; 17(2):e2229. PubMed ID: 33462998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging.
    Ding AS; Lu A; Li Z; Sahu M; Galaiya D; Siewerdsen JH; Unberath M; Taylor RH; Creighton FX
    Otolaryngol Head Neck Surg; 2023 Oct; 169(4):988-998. PubMed ID: 36883992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.
    Ding AS; Lu A; Li Z; Galaiya D; Siewerdsen JH; Taylor RH; Creighton FX
    Otolaryngol Head Neck Surg; 2022 Jul; 167(1):133-140. PubMed ID: 34491849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automated preoperative segmentation of temporal bone structures from clinical CT scans.
    Neves CA; Tran ED; Kessler IM; Blevins NH
    Sci Rep; 2021 Jan; 11(1):116. PubMed ID: 33420386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic multi-label temporal bone computed tomography segmentation with deep learning.
    Zhou L; Li Z
    Int J Med Robot; 2023 Oct; 19(5):e2536. PubMed ID: 37203865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based approach for the automatic segmentation of adult and pediatric temporal bone computed tomography images.
    Ke J; Lv Y; Ma F; Du Y; Xiong S; Wang J; Wang J
    Quant Imaging Med Surg; 2023 Mar; 13(3):1577-1591. PubMed ID: 36915310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans.
    Nikan S; Van Osch K; Bartling M; Allen DG; Rohani SA; Connors B; Agrawal SK; Ladak HM
    IEEE Trans Image Process; 2021; 30():739-753. PubMed ID: 33226942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Extraction of Anatomical Measurements From Temporal Bone CT Imaging.
    Ding AS; Lu A; Li Z; Galaiya D; Ishii M; Siewerdsen JH; Taylor RH; Creighton FX
    Otolaryngol Head Neck Surg; 2022 Oct; 167(4):731-738. PubMed ID: 35133916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of head CT scans for computer-assisted craniomaxillofacial surgery applying a hierarchical patch-based stack of convolutional neural networks.
    Steybe D; Poxleitner P; Metzger MC; Brandenburg LS; Schmelzeisen R; Bamberg F; Tran PH; Kellner E; Reisert M; Russe MF
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):2093-2101. PubMed ID: 35665881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of UNETR for automatic cochlear segmentation in temporal bone CTs.
    Li Z; Zhou L; Tan S; Tang A
    Auris Nasus Larynx; 2023 Apr; 50(2):212-217. PubMed ID: 35970625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward an automatic preoperative pipeline for image-guided temporal bone surgery.
    Fauser J; Stenin I; Bauer M; Hsu WH; Kristin J; Klenzner T; Schipper J; Mukhopadhyay A
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):967-976. PubMed ID: 30888596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atlas-based segmentation of temporal bone surface structures.
    Powell KA; Kashikar T; Hittle B; Stredney D; Kerwin T; Wiet GJ
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1267-1273. PubMed ID: 31025245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic identification and 3D rendering of temporal bone anatomy.
    Noble JH; Dawant BM; Warren FM; Labadie RF
    Otol Neurotol; 2009 Jun; 30(4):436-42. PubMed ID: 19339909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability in Manual Segmentation of Temporal Bone Structures in Cone Beam CT Images.
    Lee JW; Andersen SAW; Hittle B; Powell KA; Al-Fartoussi H; Banks L; Brannen Z; Lahchich M; Wiet GJ
    Otol Neurotol; 2024 Mar; 45(3):e137-e141. PubMed ID: 38361290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Method for Rapid Simultaneous Multistructure Temporal Bone Segmentation.
    Neves CA; Chemaly TE; Fu F; Blevins NH
    Otolaryngol Head Neck Surg; 2024 Jun; 170(6):1570-1580. PubMed ID: 38769857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atlas-Based Segmentation of Temporal Bone Anatomy.
    Powell KA; Liang T; Hittle B; Stredney D; Kerwin T; Wiet GJ
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1937-1944. PubMed ID: 28852952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.