BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

635 related articles for article (PubMed ID: 34753506)

  • 1. The role of pathological tau in synaptic dysfunction in Alzheimer's diseases.
    Wu M; Zhang M; Yin X; Chen K; Hu Z; Zhou Q; Cao X; Chen Z; Liu D
    Transl Neurodegener; 2021 Nov; 10(1):45. PubMed ID: 34753506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations.
    Li K; Wei Q; Liu FF; Hu F; Xie AJ; Zhu LQ; Liu D
    Mol Neurobiol; 2018 Apr; 55(4):3021-3032. PubMed ID: 28456942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease.
    Torres AK; Jara C; Park-Kang HS; Polanco CM; Tapia D; Alarcón F; de la Peña A; Llanquinao J; Vargas-Mardones G; Indo JA; Inestrosa NC; Tapia-Rojas C
    J Alzheimers Dis; 2021; 84(4):1391-1414. PubMed ID: 34719499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circulating small extracellular vesicles in Alzheimer's disease: a case-control study of neuro-inflammation and synaptic dysfunction.
    Singh R; Rai S; Bharti PS; Zehra S; Gorai PK; Modi GP; Rani N; Dev K; Inampudi KK; Y VV; Chatterjee P; Nikolajeff F; Kumar S
    BMC Med; 2024 Jun; 22(1):254. PubMed ID: 38902659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Amyloid-Beta and Tau in the Early Pathogenesis of Alzheimer's Disease.
    Yin X; Qiu Y; Zhao C; Zhou Z; Bao J; Qian W
    Med Sci Monit; 2021 Sep; 27():e933084. PubMed ID: 34471085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer's disease.
    Sokolow S; Henkins KM; Bilousova T; Gonzalez B; Vinters HV; Miller CA; Cornwell L; Poon WW; Gylys KH
    J Neurochem; 2015 May; 133(3):368-79. PubMed ID: 25393609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease.
    Reddy PH
    Brain Res; 2011 Sep; 1415():136-48. PubMed ID: 21872849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer's disease Neurons.
    Rajmohan R; Reddy PH
    J Alzheimers Dis; 2017; 57(4):975-999. PubMed ID: 27567878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for tau at the synapse in Alzheimer's disease pathogenesis.
    Pooler AM; Noble W; Hanger DP
    Neuropharmacology; 2014 Jan; 76 Pt A():1-8. PubMed ID: 24076336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abeta exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer's disease.
    Folwell J; Cowan CM; Ubhi KK; Shiabh H; Newman TA; Shepherd D; Mudher A
    Exp Neurol; 2010 Jun; 223(2):401-9. PubMed ID: 19782075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony.
    Forner S; Baglietto-Vargas D; Martini AC; Trujillo-Estrada L; LaFerla FM
    Trends Neurosci; 2017 Jun; 40(6):347-357. PubMed ID: 28494972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic changes in Alzheimer's disease and its models.
    Pozueta J; Lefort R; Shelanski ML
    Neuroscience; 2013 Oct; 251():51-65. PubMed ID: 22687952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of intraneuronal β-amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses.
    Takahashi RH; Capetillo-Zarate E; Lin MT; Milner TA; Gouras GK
    PLoS One; 2013; 8(1):e51965. PubMed ID: 23372648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic tau: A pathological or physiological phenomenon?
    Robbins M; Clayton E; Kaminski Schierle GS
    Acta Neuropathol Commun; 2021 Sep; 9(1):149. PubMed ID: 34503576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intersection of amyloid β and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease.
    Crimins JL; Pooler A; Polydoro M; Luebke JI; Spires-Jones TL
    Ageing Res Rev; 2013 Jun; 12(3):757-63. PubMed ID: 23528367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking amyloid-β and tau: amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton.
    Zempel H; Mandelkow EM
    Neurodegener Dis; 2012; 10(1-4):64-72. PubMed ID: 22156588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system.
    Tai HC; Serrano-Pozo A; Hashimoto T; Frosch MP; Spires-Jones TL; Hyman BT
    Am J Pathol; 2012 Oct; 181(4):1426-35. PubMed ID: 22867711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies.
    Kamat PK; Kalani A; Rai S; Swarnkar S; Tota S; Nath C; Tyagi N
    Mol Neurobiol; 2016 Jan; 53(1):648-661. PubMed ID: 25511446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synapses and dendritic spines as pathogenic targets in Alzheimer's disease.
    Yu W; Lu B
    Neural Plast; 2012; 2012():247150. PubMed ID: 22474602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPG302 Reverses Synaptic and Cognitive Deficits Without Altering Amyloid or Tau Pathology in a Transgenic Model of Alzheimer's Disease.
    Trujillo-Estrada L; Vanderklish PW; Nguyen MMT; Kuang RR; Nguyen C; Huynh E; da Cunha C; Javonillo DI; Forner S; Martini AC; Sarraf ST; Simmon VF; Baglietto-Vargas D; LaFerla FM
    Neurotherapeutics; 2021 Oct; 18(4):2468-2483. PubMed ID: 34738197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.