These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34753572)
1. Primer-template conversion-based cascade signal amplification strategy for sensitive and accurate detection of polynucleotide kinase activity. Huang C; Shen G; Ding S; Kan A; Jiang D; Jiang W Anal Chim Acta; 2021 Dec; 1187():339139. PubMed ID: 34753572 [TBL] [Abstract][Full Text] [Related]
2. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification. Cheng R; Tao M; Shi Z; Zhang X; Jin Y; Li B Biosens Bioelectron; 2015 Nov; 73():138-145. PubMed ID: 26057733 [TBL] [Abstract][Full Text] [Related]
3. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390 [TBL] [Abstract][Full Text] [Related]
4. A label-free fluorescent biosensor for amplified detection of T4 polynucleotide kinase activity based on rolling circle amplification and catalytic hairpin assembly. Cui W; Fan X; Zhao W; Liu J; Zheng L; Zhou L; Zhang J; Zhang X; Wang X Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121938. PubMed ID: 36209712 [TBL] [Abstract][Full Text] [Related]
5. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification. Li X; Xu X; Song J; Xue Q; Li C; Jiang W Biosens Bioelectron; 2017 May; 91():631-636. PubMed ID: 28107744 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe Tao J; Liu Z; Zhu Z; Zhang Y; Wang H; Pang P; Yang C; Yang W Talanta; 2022 May; 241():123272. PubMed ID: 35121542 [TBL] [Abstract][Full Text] [Related]
7. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors. Zhang K; Wang L; Zhao H; Jiang W Talanta; 2018 Mar; 179():331-336. PubMed ID: 29310240 [TBL] [Abstract][Full Text] [Related]
8. A label-free cyclic assembly of G-quadruplex nanowires for cascade amplification detection of T4 polynucleotide kinase activity and inhibition. Shi Z; Zhang X; Cheng R; Li B; Jin Y Analyst; 2015 Sep; 140(17):6124-30. PubMed ID: 26215375 [TBL] [Abstract][Full Text] [Related]
9. A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation. Wei L; Kong X; Wang M; Zhang Y; Pan R; Cheng Y; Lv Z; Zhou J; Ming J Anal Bioanal Chem; 2022 Nov; 414(27):7923-7933. PubMed ID: 36136111 [TBL] [Abstract][Full Text] [Related]
10. Terminal deoxynucleotidyl transferase-activated nicking enzyme amplification reaction for specific and sensitive detection of DNA methyltransferase and polynucleotide kinase. Du YC; Wang SY; Li XY; Wang YX; Tang AN; Kong DM Biosens Bioelectron; 2019 Dec; 145():111700. PubMed ID: 31539651 [TBL] [Abstract][Full Text] [Related]
11. Amplified detection of DNA ligase and polynucleotide kinase/phosphatase on the basis of enrichment of catalytic G-quadruplex DNAzyme by rolling circle amplification. Jiang HX; Kong DM; Shen HX Biosens Bioelectron; 2014 May; 55():133-8. PubMed ID: 24370884 [TBL] [Abstract][Full Text] [Related]
12. Self-primer and self-template recycle rolling circle amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Zhang P; Wang L; Zhao H; Xu X; Jiang W Anal Chim Acta; 2018 Feb; 1001():119-124. PubMed ID: 29291794 [TBL] [Abstract][Full Text] [Related]
13. Sensitive fluorescent detection of Listeria monocytogenes by combining a universal asymmetric polymerase chain reaction with rolling circle amplification. Zhan Z; Liu J; Yan L; Aguilar ZP; Xu H J Pharm Biomed Anal; 2019 May; 169():181-187. PubMed ID: 30877929 [TBL] [Abstract][Full Text] [Related]
14. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
15. Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification. Tao M; Zhang J; Jin Y; Li B Anal Biochem; 2014 Nov; 464():63-9. PubMed ID: 25058928 [TBL] [Abstract][Full Text] [Related]
16. Highly sensitive detection of T4 polynucleotide kinase activity by coupling split DNAzyme and ligation-triggered DNAzyme cascade amplification. Liu S; Ming J; Lin Y; Wang C; Cheng C; Liu T; Wang L Biosens Bioelectron; 2014 May; 55():225-30. PubMed ID: 24384264 [TBL] [Abstract][Full Text] [Related]
17. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification. Liu X; Xue Q; Ding Y; Zhu J; Wang L; Jiang W Analyst; 2014 Jun; 139(11):2884-9. PubMed ID: 24752174 [TBL] [Abstract][Full Text] [Related]
18. A sensitive electrochemical assay for T4 polynucleotide kinase activity based on titanium dioxide nanotubes and a rolling circle amplification strategy. Zhang Y; Fang X; Zhu Z; Lai Y; Xu C; Pang P; Wang H; Yang C; Barrow CJ; Yang W RSC Adv; 2018 Nov; 8(67):38436-38444. PubMed ID: 35559107 [TBL] [Abstract][Full Text] [Related]
19. Exonuclease III-assisted signal amplification strategy for sensitive fluorescence detection of polynucleotide kinase based on poly(thymine)-templated copper nanoparticles. Zhao H; Yan Y; Chen M; Hu T; Wu K; Liu H; Ma C Analyst; 2019 Nov; 144(22):6689-6697. PubMed ID: 31598619 [TBL] [Abstract][Full Text] [Related]
20. Label-free and highly sensitive APE1 detection based on rolling circle amplification combined with G-quadruplex. Liu B; Yang Z; Huang T; Li MM; Duan W; Xie B; Chen JX; Dai Z; Chen J Talanta; 2022 Jul; 244():123404. PubMed ID: 35349840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]