These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 34753574)

  • 1. μOPTO: A microfluidic paper-based optoelectronic tongue as presumptive tests for the discrimination of alkaloid drugs for forensic purposes.
    Dias BC; Batista AD; da Silveira Petruci JF
    Anal Chim Acta; 2021 Dec; 1187():339141. PubMed ID: 34753574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments.
    Pinheiro ND; Freire RT; Conrado JAM; Batista AD; da Silveira Petruci JF
    Anal Chim Acta; 2021 Jan; 1143():1-8. PubMed ID: 33384106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-based colorimetric sensor array for the rapid and on-site discrimination of green tea samples based on the flavonoid composition.
    Gomes JS; de Sousa RMF; Petruci JFDS
    Anal Methods; 2022 Jun; 14(25):2471-2478. PubMed ID: 35687068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable and low-cost colorimetric office paper-based device for phenacetin detection in seized cocaine samples.
    da Silva GO; de Araujo WR; Paixão TRLC
    Talanta; 2018 Jan; 176():674-678. PubMed ID: 28917806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine.
    Wang L; Musile G; McCord BR
    Electrophoresis; 2018 Feb; 39(3):470-475. PubMed ID: 28834613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of chemical 'spot' tests: A presumptive illicit drug identification technique.
    Philp M; Fu S
    Drug Test Anal; 2018 Jan; 10(1):95-108. PubMed ID: 28915346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and discrimination of antibiotics in food samples using a microfluidic paper-based optical tongue.
    Taghizadeh-Behbahani M; Shamsipur M; Hemmateenejad B
    Talanta; 2022 May; 241():123242. PubMed ID: 35085991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Colorimetric Membrane-Based Sensor with Improved Selectivity towards Amphetamine.
    Jornet-Martínez N; Campíns-Falcó P; Herráez-Hernández R
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thanatochemistry at the crime scene: a microfluidic paper-based device for ammonium analysis in the vitreous humor.
    Musile G; Agard Y; De Palo EF; Shestakova K; Bortolotti F; Tagliaro F
    Anal Chim Acta; 2019 Nov; 1083():150-156. PubMed ID: 31493805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colour quantitation for chemical spot tests for a controlled substances presumptive test database.
    Elkins KM; Weghorst AC; Quinn AA; Acharya S
    Drug Test Anal; 2017 Feb; 9(2):306-310. PubMed ID: 26858007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barrier-Free Microfluidic Paper Analytical Devices for Multiplex Colorimetric Detection of Analytes.
    Chauhan A; Toley BJ
    Anal Chem; 2021 Jun; 93(25):8954-8961. PubMed ID: 34126741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analytical study on reagent-fused silica gel plate and wax painted paper-based microfluidic device for serological testing.
    Krishna R; Anil EM
    Forensic Sci Int; 2020 Dec; 317():110517. PubMed ID: 32979844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid determination of scopolamine in evidence of recreational and predatory use.
    Sáiz J; Mai TD; López ML; Bartolomé C; Hauser PC; García-Ruiz C
    Sci Justice; 2013 Dec; 53(4):409-14. PubMed ID: 24188342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disposable microfluidic sensor arrays for discrimination of antioxidants.
    Park SH; Maruniak A; Kim J; Yi GR; Lim SH
    Talanta; 2016 Jun; 153():163-9. PubMed ID: 27130104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous quantification of multiple biomarkers on a self-calibrating microfluidic paper-based analytic device.
    Kim S; Kim D; Kim S
    Anal Chim Acta; 2020 Feb; 1097():120-126. PubMed ID: 31910951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays.
    Huo D; Wu Y; Yang M; Fa H; Luo X; Hou C
    Food Chem; 2014 Feb; 145():639-45. PubMed ID: 24128526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Color Spot Test As a Presumptive Tool for the Rapid Detection of Synthetic Cathinones.
    Philp M; Shimmon R; Tahtouh M; Fu S
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29443096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.