These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34753651)

  • 1. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum.
    Sun X; Mao M; Lu K; Hu Q; Liu W; Lin Z
    J Hazard Mater; 2022 Feb; 424(Pt C):127585. PubMed ID: 34753651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic recovery from water containing arsenite and arsenate ions by hydrothermal mineralization.
    Itakura T; Sasai R; Itoh H
    J Hazard Mater; 2007 Jul; 146(1-2):328-33. PubMed ID: 17239530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags.
    Zhang X; Sun Y; Ma Y; Ji W; Ren Y
    Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution.
    Jia C; Wu L; Chen Q; Lin J; Yang L; Song Z; Guan B
    Chemosphere; 2020 Sep; 255():126936. PubMed ID: 32417511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution.
    Ma X; Yao S; Yuan Z; Bi R; Wu X; Zhang J; Wang S; Wang X; Jia Y
    Chemosphere; 2020 Jul; 250():126290. PubMed ID: 32120149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO
    Lu Z; Qi X; Zhu X; Li X; Li K; Wang H
    Environ Pollut; 2021 Oct; 287():117484. PubMed ID: 34153609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly effective remediation of high arsenic-bearing wastewater using aluminum-containing waste residue.
    Yang N; Qi X; Li Y; Li G; Duan X
    J Environ Manage; 2023 Jan; 325(Pt A):116417. PubMed ID: 36257224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel arsenic immobilization strategy via a two-step process: Arsenic concentration from dilute solution using schwertmannite and immobilization in Ca-Fe-AsO
    Park I; Ryota T; Yuto T; Tabelin CB; Phengsaart T; Jeon S; Ito M; Hiroyoshi N
    J Environ Manage; 2021 Oct; 295():113052. PubMed ID: 34147990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient reductive recovery of arsenic from acidic wastewater by a UV/dithionite process.
    Yang X; Peng X; Lu X; He M; Yan J; Kong L
    Water Res; 2024 Nov; 265():122299. PubMed ID: 39180954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of arsenic in acidic wastewater using Lead-Zinc smelting slag: From waste solid to As-stabilized mineral.
    Li Y; Qi X; Li G; Duan X; Yang N
    Chemosphere; 2022 Aug; 301():134736. PubMed ID: 35500627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive Removal and Recovery of As(V) and As(III) from Strongly Acidic Wastewater by a UV/Formic Acid Process.
    Kong L; Zhao J; Hu X; Zhu F; Peng X
    Environ Sci Technol; 2022 Jul; 56(13):9732-9743. PubMed ID: 35724662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate.
    Chen P; Zhao Y; Yao J; Zhu J; Cao J
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y; Demopoulos GP
    Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-calcium reinforced solidification of arsenic alkali residue in geopolymer composite: Wide pH stabilization and its mechanism.
    Sun Y; Zhang P; Li Z; Chen J; Ke Y; Hu J; Liu B; Yang J; Liang S; Su X; Hou H
    Chemosphere; 2023 Jan; 312(Pt 2):137063. PubMed ID: 36395889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of arsenic levels in acid-treated arsenic-containing sludge after steel slag-fly ash gel curing.
    Cao H; Wang J; Qi X
    Environ Technol; 2024 Mar; ():1-14. PubMed ID: 38471045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge.
    Zhang T; Han J; Dong L; Liu D; Jiao F; Qin W; Liu W
    J Environ Manage; 2024 Feb; 353():120148. PubMed ID: 38306856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge.
    Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W
    Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of arsenic with struvite and hydroxylapatite in phosphate-bearing solutions.
    Rouff AA; Ma N; Kustka AB
    Chemosphere; 2016 Mar; 146():574-81. PubMed ID: 26748335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.
    Wang Y; Lv C; Xiao L; Fu G; Liu Y; Ye S; Chen Y
    Environ Technol; 2019 May; 40(13):1714-1720. PubMed ID: 29345188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient biosorbent for the removal of arsenic from a typical urban-generated wastewater.
    Agunwamba JC; Amu AM; Nwonu DC
    Environ Monit Assess; 2022 Oct; 194(12):911. PubMed ID: 36253592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.