BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34753677)

  • 1. CAR-T cell therapy in India requires a paradigm shift in training, education and health care processes.
    Ravindranath A; Dubey A; Suresh S; Chaudhuri G; Chirmule N
    Cytotherapy; 2022 Feb; 24(2):101-109. PubMed ID: 34753677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
    Morgan MA; Büning H; Sauer M; Schambach A
    Front Immunol; 2020; 11():1965. PubMed ID: 32903482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated production of gene-modified chimeric antigen receptor T cells using the Cocoon Platform.
    Trainor N; Purpura KA; Middleton K; Fargo K; Hails L; Vicentini-Hogan M; McRobie C; Daniels R; Densham P; Gardin P; Fouks M; Brayer H; Malka RG; Rodin A; Ogen T; Besser MJ; Smith T; Leonard D; Bryan A
    Cytotherapy; 2023 Dec; 25(12):1349-1360. PubMed ID: 37690020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for manufacturing cell therapy products aligned with patient needs.
    Guha P; Katz SC
    Methods Cell Biol; 2022; 167():203-226. PubMed ID: 35152997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A GMP-Compliant Procedure for the Generation of Gene-Modified T cells.
    Savvopoulos N; Stampolitis K; Alexandropoulos G; Kefala D; Lysandrou M; Zacharioudaki V; Tsolakos N; Spyridonidis A
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37870303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Manufacturing of CAR T cells for Cancer Immunotherapy.
    Abou-El-Enein M; Elsallab M; Feldman SA; Fesnak AD; Heslop HE; Marks P; Till BG; Bauer G; Savoldo B
    Blood Cancer Discov; 2021 Sep; 2(5):408-422. PubMed ID: 34568831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [CAR T cells as drugs for novel therapies (advanced therapy medicinal products)].
    Köhl U; Abken H
    Internist (Berl); 2021 Apr; 62(4):449-457. PubMed ID: 33590292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy.
    Ruppel KE; Fricke S; Köhl U; Schmiedel D
    Front Immunol; 2022; 13():822298. PubMed ID: 35371071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-the-Shelf Chimeric Antigen Receptor Immune Cells from Human Pluripotent Stem Cells.
    Cao H; Sugimura R
    Cancer Treat Res; 2022; 183():255-274. PubMed ID: 35551663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturing innovation to drive down cell therapy costs.
    Khang M; Suryaprakash S; Kotrappa M; Mulyasasmita W; Topp S; Wu J
    Trends Biotechnol; 2023 Oct; 41(10):1216-1219. PubMed ID: 37236813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CAR-NK cells: A promising cellular immunotherapy for cancer.
    Xie G; Dong H; Liang Y; Ham JD; Rizwan R; Chen J
    EBioMedicine; 2020 Sep; 59():102975. PubMed ID: 32853984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufacturing Cell and Gene Therapies: Challenges in Clinical Translation.
    Lee NK; Chang JW
    Ann Lab Med; 2024 Jul; 44(4):314-323. PubMed ID: 38361427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric antigen receptor-T cell therapy manufacturing: modelling the effect of offshore production on aggregate cost of goods.
    Harrison RP; Zylberberg E; Ellison S; Levine BL
    Cytotherapy; 2019 Feb; 21(2):224-233. PubMed ID: 30770285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preclinical Evaluation of Allogeneic CAR T Cells Targeting BCMA for the Treatment of Multiple Myeloma.
    Sommer C; Boldajipour B; Kuo TC; Bentley T; Sutton J; Chen A; Geng T; Dong H; Galetto R; Valton J; Pertel T; Juillerat A; Gariboldi A; Pascua E; Brown C; Chin SM; Sai T; Ni Y; Duchateau P; Smith J; Rajpal A; Van Blarcom T; Chaparro-Riggers J; Sasu BJ
    Mol Ther; 2019 Jun; 27(6):1126-1138. PubMed ID: 31005597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GMP-Compliant Manufacturing of NKG2D CAR Memory T Cells Using CliniMACS Prodigy.
    Fernández L; Fernández A; Mirones I; Escudero A; Cardoso L; Vela M; Lanzarot D; de Paz R; Leivas A; Gallardo M; Marcos A; Romero AB; Martínez-López J; Pérez-Martínez A
    Front Immunol; 2019; 10():2361. PubMed ID: 31649672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of CAR-T cell therapy monitoring using high-throughput assays.
    Pratt CB; Alexander M
    Drug Discov Today; 2022 Oct; 27(10):103310. PubMed ID: 35760281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming Challenges in Process Development of Cellular Therapies.
    Highfill SL; Stroncek DF
    Curr Hematol Malig Rep; 2019 Aug; 14(4):269-277. PubMed ID: 31278568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innate and Innate-Like Cells: The Future of Chimeric Antigen Receptor (CAR) Cell Therapy.
    Cortés-Selva D; Dasgupta B; Singh S; Grewal IS
    Trends Pharmacol Sci; 2021 Jan; 42(1):45-59. PubMed ID: 33250273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between centralized and decentralized supply chains of autologous chimeric antigen receptor T-cell therapies: a UK case study based on discrete event simulation.
    Lam C; Meinert E; Yang A; Cui Z
    Cytotherapy; 2021 May; 23(5):433-451. PubMed ID: 33674239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy.
    Nawaz W; Xu S; Li Y; Huang B; Wu X; Wu Z
    Acta Biomater; 2020 Jun; 109():21-36. PubMed ID: 32294554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.