BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34753957)

  • 1. Co-evolution based machine-learning for predicting functional interactions between human genes.
    Stupp D; Sharon E; Bloch I; Zitnik M; Zuk O; Tabach Y
    Nat Commun; 2021 Nov; 12(1):6454. PubMed ID: 34753957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved method for identifying functionally linked proteins using phylogenetic profiles.
    Cokus S; Mizutani S; Pellegrini M
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S7. PubMed ID: 17570150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CladeOScope: functional interactions through the prism of clade-wise co-evolution.
    Tsaban T; Stupp D; Sherill-Rofe D; Bloch I; Sharon E; Schueler-Furman O; Wiener R; Tabach Y
    NAR Genom Bioinform; 2021 Jun; 3(2):lqab024. PubMed ID: 33928243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Ciliary Genes and Evolution from Multi-Level Phylogenetic Profiling.
    Nevers Y; Prasad MK; Poidevin L; Chennen K; Allot A; Kress A; Ripp R; Thompson JD; Dollfus H; Poch O; Lecompte O
    Mol Biol Evol; 2017 Aug; 34(8):2016-2034. PubMed ID: 28460059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of co-evolution analysis through phylogenetic profiling reveals pathway-specific signals.
    Bloch I; Sherill-Rofe D; Stupp D; Unterman I; Beer H; Sharon E; Tabach Y
    Bioinformatics; 2020 Aug; 36(14):4116-4125. PubMed ID: 32353123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards validating the hypothesis of phylogenetic profiling.
    Loganantharaj R; Atwi M
    BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S25. PubMed ID: 18047725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches.
    Kotula HJ; Peralta G; Frost CM; Todd JH; Tylianakis JM
    PLoS One; 2021; 16(6):e0252448. PubMed ID: 34061885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes.
    Feuermann M; Gaudet P; Mi H; Lewis SE; Thomas PD
    Database (Oxford); 2016; 2016():. PubMed ID: 28025345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic genome-wide reconstruction of phylogenetic gene trees.
    Wapinski I; Pfeffer A; Friedman N; Regev A
    Bioinformatics; 2007 Jul; 23(13):i549-58. PubMed ID: 17646342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying disease genes using machine learning and gene functional similarities, assessed through Gene Ontology.
    Asif M; Martiniano HFMCM; Vicente AM; Couto FM
    PLoS One; 2018; 13(12):e0208626. PubMed ID: 30532199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving genome annotations using phylogenetic profile anomaly detection.
    Mikkelsen TS; Galagan JE; Mesirov JP
    Bioinformatics; 2005 Feb; 21(4):464-70. PubMed ID: 15374867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.
    Park CY; Wong AK; Greene CS; Rowland J; Guan Y; Bongo LA; Burdine RD; Troyanskaya OG
    PLoS Comput Biol; 2013; 9(3):e1002957. PubMed ID: 23516347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants.
    Parvandeh S; Donehower LA; Panagiotis K; Hsu TK; Asmussen JK; Lee K; Lichtarge O
    Nucleic Acids Res; 2022 Jul; 50(12):e70. PubMed ID: 35412634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that DNA repair genes, a family of tumor suppressor genes, are associated with evolution rate and size of genomes.
    Voskarides K; Dweep H; Chrysostomou C
    Hum Genomics; 2019 Jun; 13(1):26. PubMed ID: 31174607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases.
    Taujale R; Venkat A; Huang LC; Zhou Z; Yeung W; Rasheed KM; Li S; Edison AS; Moremen KW; Kannan N
    Elife; 2020 Apr; 9():. PubMed ID: 32234211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary signal in metagenome phyletic profiles predicts many gene functions.
    Vidulin V; Šmuc T; Džeroski S; Supek F
    Microbiome; 2018 Jul; 6(1):129. PubMed ID: 29991352
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.