These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34754048)

  • 1. Pore architecture and particulate organic matter in soils under monoculture switchgrass and restored prairie in contrasting topography.
    Juyal A; Guber A; Oerther M; Quigley M; Kravchenko A
    Sci Rep; 2021 Nov; 11(1):21998. PubMed ID: 34754048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil pore characteristics and the fate of new switchgrass-derived carbon in switchgrass and prairie bioenergy cropping systems.
    Kim K; Juyal A; Kravchenko A
    Sci Rep; 2024 Apr; 14(1):7824. PubMed ID: 38570696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil Origin and Plant Genotype Modulate Switchgrass Aboveground Productivity and Root Microbiome Assembly.
    Beschoren da Costa P; Benucci GMN; Chou MY; Van Wyk J; Chretien M; Bonito G
    mBio; 2022 Apr; 13(2):e0007922. PubMed ID: 35384699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Diversity and Fertilizer Management Shape the Belowground Microbiome of Native Grass Bioenergy Feedstocks.
    Revillini D; Wilson GWT; Miller RM; Lancione R; Johnson NC
    Front Plant Sci; 2019; 10():1018. PubMed ID: 31475019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems.
    Duran BE; Duncan DS; Oates LG; Kucharik CJ; Jackson RD
    PLoS One; 2016; 11(3):e0151919. PubMed ID: 26991790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.
    Gelfand I; Hamilton SK; Kravchenko AN; Jackson RD; Thelen KD; Robertson GP
    Environ Sci Technol; 2020 Mar; 54(5):2961-2974. PubMed ID: 32052964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems.
    Morris GP; Hu Z; Grabowski PP; Borevitz JO; de Graaff MA; Miller RM; Jastrow JD
    Glob Change Biol Bioenergy; 2016 Sep; 8(5):1000-1014. PubMed ID: 27668013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial nitrogen cycling response to forest-based bioenergy production.
    Minick KJ; Strahm BD; Fox TR; Sucre EB; Leggett ZH
    Ecol Appl; 2015 Dec; 25(8):2366-81. PubMed ID: 26910961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of Mn Oxidation States in Grassland Soils and Their Relationships with Soil Pores.
    Kravchenko AN; Richardson JA; Lee JH; Guber AK
    Environ Sci Technol; 2022 Nov; 56(22):16462-16472. PubMed ID: 36268932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographic and soil influences on root productivity of three bioenergy cropping systems.
    Ontl TA; Hofmockel KS; Cambardella CA; Schulte LA; Kolka RK
    New Phytol; 2013 Aug; 199(3):727-37. PubMed ID: 23692583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?
    Dickson TL; Gross KL
    PLoS One; 2015; 10(9):e0135253. PubMed ID: 26359662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing Os Staining Approach for Visualizing Soil Organic Matter Patterns in Intact Samples via X-ray Dual-Energy Tomography Scanning.
    Zheng H; Kim K; Kravchenko A; Rivers M; Guber A
    Environ Sci Technol; 2020 Jul; 54(14):8980-8989. PubMed ID: 32608229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The soil pore structure encountered by roots affects plant-derived carbon inputs and fate.
    Lucas M; Santiago JP; Chen J; Guber A; Kravchenko A
    New Phytol; 2023 Oct; 240(2):515-528. PubMed ID: 37532958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofuel intercropping effects on soil carbon and microbial activity.
    Strickland MS; Leggett ZH; Sucre EB; Bradford MA
    Ecol Appl; 2015 Jan; 25(1):140-50. PubMed ID: 26255363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.).
    Afzal S; Begum N; Zhao H; Fang Z; Lou L; Cai Q
    J Appl Microbiol; 2017 Aug; 123(2):498-510. PubMed ID: 28581636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of field-grown transgenic switchgrass carbon inputs on soil organic carbon cycling.
    Xu S; Ottinger SL; Schaeffer SM; DeBruyn JM; Stewart CN; Mazarei M; Jagadamma S
    PeerJ; 2019; 7():e7887. PubMed ID: 31637134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching.
    Shrestha P; Bellitürk K; Görres JH
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of nitrogen addition on switchgrass root-associated diazotrophic community structure and function.
    Smercina DN; Evans SE; Friesen ML; Tiemann LK
    FEMS Microbiol Ecol; 2020 Nov; 96(12):. PubMed ID: 33038234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Biofuel Crop Switchgrass (
    Bai J; Luo L; Li A; Lai X; Zhang X; Yu Y; Wang H; Wu N; Zhang L
    Life (Basel); 2022 Dec; 12(12):. PubMed ID: 36556470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics.
    Kravchenko AN; Negassa WC; Guber AK; Rivers ML
    Sci Rep; 2015 Nov; 5():16261. PubMed ID: 26541265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.