These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34754658)
41. Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma. Chen C; Zheng A; Ou X; Wang J; Ma X Front Oncol; 2020; 10():1151. PubMed ID: 33042784 [No Abstract] [Full Text] [Related]
42. Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas. Gao M; Huang S; Pan X; Liao X; Yang R; Liu J Front Oncol; 2020; 10():1676. PubMed ID: 33014836 [TBL] [Abstract][Full Text] [Related]
43. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. Tan Y; Zhang ST; Wei JW; Dong D; Wang XC; Yang GQ; Tian J; Zhang H Eur Radiol; 2019 Jul; 29(7):3325-3337. PubMed ID: 30972543 [TBL] [Abstract][Full Text] [Related]
44. Ependymoma and pilocytic astrocytoma: Differentiation using radiomics approach based on machine learning. Li M; Wang H; Shang Z; Yang Z; Zhang Y; Wan H J Clin Neurosci; 2020 Aug; 78():175-180. PubMed ID: 32336636 [TBL] [Abstract][Full Text] [Related]
45. MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features. Ma X; Shen F; Jia Y; Xia Y; Li Q; Lu J BMC Med Imaging; 2019 Nov; 19(1):86. PubMed ID: 31747902 [TBL] [Abstract][Full Text] [Related]
46. Nonenhanced MRI-based radiomics model for preoperative prediction of nonperfused volume ratio for high-intensity focused ultrasound ablation of uterine leiomyomas. Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F Int J Hyperthermia; 2021; 38(1):1349-1358. PubMed ID: 34486913 [TBL] [Abstract][Full Text] [Related]
47. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning? Liu X; Khalvati F; Namdar K; Fischer S; Lewis S; Taouli B; Haider MA; Jhaveri KS Eur Radiol; 2021 Jan; 31(1):244-255. PubMed ID: 32749585 [TBL] [Abstract][Full Text] [Related]
48. Assessing CT-based Volumetric Analysis via Transfer Learning with MRI and Manual Labels for Idiopathic Normal Pressure Hydrocephalus. Srikrishna M; Seo W; Zettergren A; Kern S; Cantré D; Gessler F; Sotoudeh H; Seidlitz J; Bernstock JD; Wahlund LO; Westman E; Skoog I; Virhammar J; Fällmar D; Schöll M medRxiv; 2024 Jun; ():. PubMed ID: 38978640 [TBL] [Abstract][Full Text] [Related]
49. Prediction of treatment outcome using MRI radiomics and machine learning in oropharyngeal cancer patients after surgical treatment. Min Park Y; Yol Lim J; Woo Koh Y; Kim SH; Chang Choi E Oral Oncol; 2021 Nov; 122():105559. PubMed ID: 34649039 [TBL] [Abstract][Full Text] [Related]
50. MR imaging of thymomas: a combined radiomics nomogram to predict histologic subtypes. Xiao G; Hu YC; Ren JL; Qin P; Han JC; Qu XY; Rong WC; Yan WQ; Tian Q; Han Y; Wang WP; Wang SM; Ma J; Wang W; Cui GB Eur Radiol; 2021 Jan; 31(1):447-457. PubMed ID: 32700020 [TBL] [Abstract][Full Text] [Related]
51. Prediction of Renal Function 1 Year After Transplantation Using Machine Learning Methods Based on Ultrasound Radiomics Combined With Clinical and Imaging Features. Zhu L; Huang R; Zhou Z; Fan Q; Yan J; Wan X; Zhao X; He Y; Dong F Ultrason Imaging; 2023 Mar; 45(2):85-96. PubMed ID: 36932907 [TBL] [Abstract][Full Text] [Related]
52. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors. Xu X; Wang H; Du P; Zhang F; Li S; Zhang Z; Yuan J; Liang Z; Zhang X; Guo Y; Liu Y; Lu H J Magn Reson Imaging; 2019 Dec; 50(6):1893-1904. PubMed ID: 30980695 [TBL] [Abstract][Full Text] [Related]
53. The Utility of Imaging Parameters in Predicting Long-Term Clinical Improvement After Shunt Surgery in Patients with Idiopathic Normal Pressure Hydrocephalus. Subramanian HE; Fadel SA; Matouk CC; Zohrabian VM; Mahajan A World Neurosurg; 2021 May; 149():e1-e10. PubMed ID: 33662608 [TBL] [Abstract][Full Text] [Related]
54. CT Texture Analysis and Machine Learning Improve Post-ablation Prognostication in Patients with Adrenal Metastases: A Proof of Concept. Daye D; Staziaki PV; Furtado VF; Tabari A; Fintelmann FJ; Frenk NE; Shyn P; Tuncali K; Silverman S; Arellano R; Gee MS; Uppot RN Cardiovasc Intervent Radiol; 2019 Dec; 42(12):1771-1776. PubMed ID: 31489473 [TBL] [Abstract][Full Text] [Related]
55. Development of MRI-Based Radiomics Model to Predict the Risk of Recurrence in Patients With Advanced High-Grade Serous Ovarian Carcinoma. Li HM; Gong J; Li RM; Xiao ZB; Qiang JW; Peng WJ; Gu YJ AJR Am J Roentgenol; 2021 Sep; 217(3):664-675. PubMed ID: 34259544 [No Abstract] [Full Text] [Related]
56. Morphometry-based radiomics for predicting therapeutic response in patients with gliomas following radiotherapy. Sherminie LPG; Jayatilake ML; Hewavithana B; Weerakoon BS; Vijithananda SM Front Oncol; 2023; 13():1139902. PubMed ID: 37664038 [TBL] [Abstract][Full Text] [Related]
57. Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR. Sun K; Jiao Z; Zhu H; Chai W; Yan X; Fu C; Cheng JZ; Yan F; Shen D J Transl Med; 2021 Oct; 19(1):443. PubMed ID: 34689804 [TBL] [Abstract][Full Text] [Related]
58. Radiomics Signatures Based on Multiparametric MRI for the Preoperative Prediction of the HER2 Status of Patients with Breast Cancer. Zhou J; Tan H; Li W; Liu Z; Wu Y; Bai Y; Fu F; Jia X; Feng A; Liu H; Wang M Acad Radiol; 2021 Oct; 28(10):1352-1360. PubMed ID: 32709582 [TBL] [Abstract][Full Text] [Related]
59. Myocardial Function Prediction After Coronary Artery Bypass Grafting Using MRI Radiomic Features and Machine Learning Algorithms. Arian F; Amini M; Mostafaei S; Rezaei Kalantari K; Haddadi Avval A; Shahbazi Z; Kasani K; Bitarafan Rajabi A; Chatterjee S; Oveisi M; Shiri I; Zaidi H J Digit Imaging; 2022 Dec; 35(6):1708-1718. PubMed ID: 35995896 [TBL] [Abstract][Full Text] [Related]
60. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Wang J; Wu CJ; Bao ML; Zhang J; Wang XN; Zhang YD Eur Radiol; 2017 Oct; 27(10):4082-4090. PubMed ID: 28374077 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]