These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 347548)
1. Different yield and properties of mitochondria from skeletal muscle of normal hamsters. Kleine TO; Steinmann WD Res Exp Med (Berl); 1978 Jan; 172(1):19-31. PubMed ID: 347548 [TBL] [Abstract][Full Text] [Related]
2. Histochemical and biochemical investigations of adenosine triphosphatase in vertebrate mixed muscles. Khan MA; Kleine TO Acta Histochem Suppl; 1977; Suppl 18():245-58. PubMed ID: 45633 [TBL] [Abstract][Full Text] [Related]
3. Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse. Bhattacharya SK; Thakar JH; Johnson PL; Shanklin DR Anal Biochem; 1991 Feb; 192(2):344-9. PubMed ID: 1903610 [TBL] [Abstract][Full Text] [Related]
4. Oxidative capacity of muscle and mitochondria: correlation of physiological, biochemical, and morphometric characteristics. Schwerzmann K; Hoppeler H; Kayar SR; Weibel ER Proc Natl Acad Sci U S A; 1989 Mar; 86(5):1583-7. PubMed ID: 2922400 [TBL] [Abstract][Full Text] [Related]
5. Populations of rat skeletal muscle mitochondria after exercise and immobilization. Krieger DA; Tate CA; McMillin-Wood J; Booth FW J Appl Physiol Respir Environ Exerc Physiol; 1980 Jan; 48(1):23-8. PubMed ID: 6444398 [TBL] [Abstract][Full Text] [Related]
6. Subsarcolemmal mitochondria isolated with the proteolytic enzyme nagarse exhibit greater protein specific activities and functional coupling. Kras KA; Willis WT; Barker N; Czyzyk T; Langlais PR; Katsanos CS Biochem Biophys Rep; 2016 Jul; 6():101-107. PubMed ID: 27092336 [TBL] [Abstract][Full Text] [Related]
7. Relationship between mitochondria and oxygen consumption in isolated cat muscles. Hoppeler H; Hudlicka O; Uhlmann E J Physiol; 1987 Apr; 385():661-75. PubMed ID: 3309266 [TBL] [Abstract][Full Text] [Related]
8. The dependence on the extramitochondrial ATP/ADP-ratio of the oxidative phosphorylation in mitochondria isolated by a new procedure from rat skeletal muscle. Reichert M; Schaller H; Kunz W; Gerber G Acta Biol Med Ger; 1978; 37(8):1167-76. PubMed ID: 749453 [TBL] [Abstract][Full Text] [Related]
10. Early changes of muscle mitochondria in Duchenne dystrophy. Partition and activity of mitochondrial enzymes in fractionated muscle of unaffected boys and adults and patients. Scholte HR; Busch HF J Neurol Sci; 1980 Mar; 45(2-3):217-34. PubMed ID: 6245185 [TBL] [Abstract][Full Text] [Related]
11. Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. Koncsos G; Varga ZV; Baranyai T; Ferdinandy P; Schulz R; Giricz Z; Boengler K J Pharmacol Toxicol Methods; 2018; 91():50-58. PubMed ID: 29378341 [TBL] [Abstract][Full Text] [Related]
12. A method for isolating intact mitochondria and nuclei from the same homogenate, and the influence of mitochondrial destruction on the properties of cell nuclei. DOUNCE AL; WITTER RF; MONTY KJ; PATE S; COTTONE MA J Biophys Biochem Cytol; 1955 Mar; 1(2):139-53. PubMed ID: 14381436 [TBL] [Abstract][Full Text] [Related]
13. Biochemical and morphometric properties of mitochondrial populations in human muscle fibres. Elander A; Sjöström M; Lundgren F; Scherstén T; Bylund-Fellenius AC Clin Sci (Lond); 1985 Aug; 69(2):153-64. PubMed ID: 2998685 [TBL] [Abstract][Full Text] [Related]
14. Optimization of preparation of mitochondria from 25-100 mg skeletal muscle. Rasmussen HN; Andersen AJ; Rasmussen UF Anal Biochem; 1997 Oct; 252(1):153-9. PubMed ID: 9324953 [TBL] [Abstract][Full Text] [Related]
15. Isolation of Intact Mitochondria from Skeletal Muscle by Differential Centrifugation for High-resolution Respirometry Measurements. Djafarzadeh S; Jakob SM J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362420 [TBL] [Abstract][Full Text] [Related]
16. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques. Grace M; Fletcher L; Powers SK; Hughes M; Coombes J J Sports Med Phys Fitness; 1996 Dec; 36(4):281-6. PubMed ID: 9062053 [TBL] [Abstract][Full Text] [Related]
17. Induction of mitochondrial alterations ex vivo in skeletal muscle. Khan MA Exp Toxicol Pathol; 1992 Apr; 44(2):70-3. PubMed ID: 1617289 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial reaction in skeletal muscle to induced activity. Schmid P; Simmler M; Walter GF; Kleinert R Int J Sports Med; 1983 May; 4(2):116-8. PubMed ID: 6874172 [TBL] [Abstract][Full Text] [Related]
19. Protective effects of atromid-S in vivo on mitochondrial stability in tissues of aged hamsters. Inamder AR; Person R; Mackler B J Gerontol; 1975 Sep; 30(5):526-30. PubMed ID: 1181356 [TBL] [Abstract][Full Text] [Related]
20. Uptake, retention, and efflux of Ca2+ by mitochondrial preparations from skeletal muscle. Allshire AP; Heffron JJ Arch Biochem Biophys; 1984 Jan; 228(1):353-63. PubMed ID: 6421235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]