These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34755219)
21. Stochastic thermodynamics and entropy production of chemical reaction systems. Tomé T; de Oliveira MJ J Chem Phys; 2018 Jun; 148(22):224104. PubMed ID: 29907050 [TBL] [Abstract][Full Text] [Related]
22. Macroscopic Entropy of Non-Equilibrium Systems and Postulates of Extended Thermodynamics: Application to Transport Phenomena and Chemical Reactions in Nanoparticles. Serdyukov SI Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265889 [TBL] [Abstract][Full Text] [Related]
23. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces. Qian H; Kjelstrup S; Kolomeisky AB; Bedeaux D J Phys Condens Matter; 2016 Apr; 28(15):153004. PubMed ID: 26986039 [TBL] [Abstract][Full Text] [Related]
24. Time reversibility and nonequilibrium thermodynamics of second-order stochastic processes. Ge H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022127. PubMed ID: 25353442 [TBL] [Abstract][Full Text] [Related]
25. Kinetic equations for diffusion in the presence of entropic barriers. Reguera D; Rubí JM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061106. PubMed ID: 11736170 [TBL] [Abstract][Full Text] [Related]
26. Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications. Kleidon A Naturwissenschaften; 2009 Jun; 96(6):653-77. PubMed ID: 19241052 [TBL] [Abstract][Full Text] [Related]
32. Energetic scaling in microbial growth. Calabrese S; Chakrawal A; Manzoni S; Van Cappellen P Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34799445 [TBL] [Abstract][Full Text] [Related]
33. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks. Fleming RM; Maes CM; Saunders MA; Ye Y; Palsson BØ J Theor Biol; 2012 Jan; 292():71-7. PubMed ID: 21983269 [TBL] [Abstract][Full Text] [Related]
34. Nonequilibrium phase transitions and pattern formation as consequences of second-order thermodynamic induction. Patitsas SN Phys Rev E; 2019 Aug; 100(2-1):022116. PubMed ID: 31574770 [TBL] [Abstract][Full Text] [Related]
35. Decomposition of the entropy production rate and nonequilibrium thermodynamics of switching diffusion processes. Yang SX; Ge H Phys Rev E; 2018 Jul; 98(1-1):012418. PubMed ID: 30110804 [TBL] [Abstract][Full Text] [Related]
36. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state. Li G; von Spakovsky MR Phys Rev E; 2016 Jan; 93(1):012137. PubMed ID: 26871054 [TBL] [Abstract][Full Text] [Related]
37. Thermodynamic Analysis of Chemically Reacting Mixtures and Their Kinetics: Example of a Mixture of Three Isomers. Pekař M Chemphyschem; 2016 Oct; 17(20):3333-3341. PubMed ID: 27442054 [TBL] [Abstract][Full Text] [Related]
39. Free energy dissipation enhances spatial accuracy and robustness of self-positioned Turing pattern in small biochemical systems. Zhang D; Zhang C; Ouyang Q; Tu Y J R Soc Interface; 2023 Jul; 20(204):20230276. PubMed ID: 37403484 [TBL] [Abstract][Full Text] [Related]
40. Steepest-entropy-ascent nonequilibrium quantum thermodynamic framework to model chemical reaction rates at an atomistic level. Beretta GP; Al-Abbasi O; von Spakovsky MR Phys Rev E; 2017 Apr; 95(4-1):042139. PubMed ID: 28505826 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]