BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34755346)

  • 21. Fluoride concentration in teas derived from Camellia Sinensis produced in Argentina.
    Valadas LAR; Girão Júnior FJ; Lotif MAL; Fernández CE; Bandeira MAM; Fonteles MMF; Bottenberg P; Squassi A
    Environ Monit Assess; 2022 Aug; 194(10):682. PubMed ID: 35976461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contents and compositions of policosanols in green tea (Camellia sinensis) leaves.
    Choi SJ; Park SY; Park JS; Park SK; Jung MY
    Food Chem; 2016 Aug; 204():94-101. PubMed ID: 26988480
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Luo B; Guang M; Yun W; Ding S; Ren S; Gao H
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China.
    Wang M; Zhang L; Liu Y; Chen D; Liu L; Li C; Kang KJ; Wang L; He Z; Yang X
    Environ Sci Pollut Res Int; 2021 May; 28(20):26112-26123. PubMed ID: 33483930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of nutritional value of dried tea leaves and infusions of black, green and white teas from Chinese plantations.
    Czernicka M; Zaguła G; Bajcar M; Saletnik B; Puchalski C
    Rocz Panstw Zakl Hig; 2017; 68(3):237-245. PubMed ID: 28895389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control.
    Wen B; Li L; Duan Y; Zhang Y; Shen J; Xia M; Wang Y; Fang W; Zhu X
    Chemosphere; 2018 Aug; 204():92-100. PubMed ID: 29653327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China.
    Xie S; Feng H; Yang F; Zhao Z; Hu X; Wei C; Liang T; Li H; Geng Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2464-2476. PubMed ID: 30471060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots.
    Gao HJ; Zhao Q; Zhang XC; Wan XC; Mao JD
    J Agric Food Chem; 2014 Mar; 62(10):2313-9. PubMed ID: 24548055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of soil fluoride pollution on wheat growth and biomass production, leaf injury index, powdery mildew infestation and trace metal uptake.
    Ahmad MN; Zia A; van den Berg L; Ahmad Y; Mahmood R; Dawar KM; Alam SS; Riaz M; Ashmore M
    Environ Pollut; 2022 Apr; 298():118820. PubMed ID: 35007676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluoride in Ceylon tea and its implications to dental health.
    Chandrajith R; Abeypala U; Dissanayake CB; Tobschall HJ
    Environ Geochem Health; 2007 Oct; 29(5):429-34. PubMed ID: 17377848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of Heavy Metals in Tea Leaves and Potential Health Risk Assessment: A Case Study from Puan County, Guizhou Province, China.
    Zhang J; Yang R; Chen R; Peng Y; Wen X; Gao L
    Int J Environ Res Public Health; 2018 Jan; 15(1):. PubMed ID: 29342877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiocesium uptake through leaf surfaces of tea plants (Camellia sinensis L.).
    Ikka T; Nishina Y; Kamoshita M; Oya Y; Okuno K; Morita A
    J Environ Radioact; 2018 Feb; 182():70-73. PubMed ID: 29197749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China.
    Li Y; Wang S; Nan Z; Zang F; Sun H; Zhang Q; Huang W; Bao L
    Sci Total Environ; 2019 May; 663():307-314. PubMed ID: 30711597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of fertilizing with N, p, se, and zn on regulating the element and functional component contents and antioxidant activity of tea leaves planted in red soil.
    Yang T; Li H; Hu X; Li J; Hu J; Liu R; Deng ZY
    J Agric Food Chem; 2014 Apr; 62(17):3823-30. PubMed ID: 24745373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scale and causes of lead contamination in Chinese tea.
    Han WY; Zhao FJ; Shi YZ; Ma LF; Ruan JY
    Environ Pollut; 2006 Jan; 139(1):125-32. PubMed ID: 15998560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis.
    Tang S; Liu Y; Zheng N; Li Y; Ma Q; Xiao H; Zhou X; Xu X; Jiang T; He P; Wu L
    Sci Rep; 2020 Feb; 10(1):1745. PubMed ID: 32019970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced fluoride adsorption of aluminum humate and its resistance on fluoride accumulation in tea leaves.
    Huang C; Zhang H; Zeng W; Ma J; Zhao S; Jiang Y; Huang C; Mao H; Liao Y
    Environ Technol; 2020 Jan; 41(3):329-338. PubMed ID: 29993344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of leaf age, species and soil depth on the authenticity and geographical origin assignment of green tea.
    Liu Z; Zhang Y; Zhang Y; Yang G; Shao S; Nie J; Yuan Y; Rogers KM
    Rapid Commun Mass Spectrom; 2019 Apr; 33(7):625-634. PubMed ID: 30667552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence, accumulation, and risk assessment of trace metals in tea (Camellia sinensis): A national reconnaissance.
    Li W; Cheng H; Mu Y; Xu A; Ma B; Wang F; Xu P
    Sci Total Environ; 2021 Oct; 792():148354. PubMed ID: 34146808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis) to fluoride.
    Liu Y; Cao D; Ma L; Jin X; Yang P; Ye F; Liu P; Gong Z; Wei C
    J Proteomics; 2018 Mar; 176():71-81. PubMed ID: 29408313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.