These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34755421)

  • 1. Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminum-Ion Batteries.
    Kong D; Cai T; Fan H; Hu H; Wang X; Cui Y; Wang D; Wang Y; Hu H; Wu M; Xue Q; Yan Z; Li X; Zhao L; Xing W
    Angew Chem Int Ed Engl; 2022 Jan; 61(3):e202114681. PubMed ID: 34755421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries.
    Zhang K; Lee TH; Cha JH; Varma RS; Choi JW; Jang HW; Shokouhimehr M
    Sci Rep; 2019 Sep; 9(1):13573. PubMed ID: 31537878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenoxazine Polymer-based p-type Positive Electrode for Aluminum-ion Batteries with Ultra-long Cycle Life.
    Yang Z; Huang X; Meng P; Jiang M; Wang Y; Yao Z; Zhang J; Sun B; Fu C
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202216797. PubMed ID: 36545849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Hydrogen of Polythiophene Induced Aluminum Ion Storage for High-Performance Al-Polythiophene Batteries.
    Kong D; Fan H; Ding X; Wang D; Tian S; Hu H; Du D; Li Y; Gao X; Hu H; Xue Q; Yan Z; Ren H; Xing W
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46065-46072. PubMed ID: 32955247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries.
    Hu Y; Ye D; Luo B; Hu H; Zhu X; Wang S; Li L; Peng S; Wang L
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29164706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential application of black and blue phosphorene as cathode materials in rechargeable aluminum batteries: a first-principles study.
    Xiao X; Wang M; Tu J; Jiao S
    Phys Chem Chem Phys; 2019 Mar; 21(13):7021-7028. PubMed ID: 30869709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of AlN monolayer as a prospective cathode for aluminum-ion batteries.
    He S; Li L; Qiao Y; Liu X; He S; Li Q; Guo D
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37499632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional composite of D-Ti
    Huo X; Wang X; Li Z; Liu J; Li J
    Nanoscale; 2020 Feb; 12(5):3387-3399. PubMed ID: 31984994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Reverse of Electrostatic Interaction Force for Ultrahigh-Energy Al-Ion batteries.
    Guan W; Wang W; Huang Z; Tu J; Lei H; Wang M; Jiao S
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202317203. PubMed ID: 38286752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Protection Strategy by Constructing MXene-Coated Cu
    Chai L; Li X; Lv W; Wu G; Zhang W; Li Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48780-48788. PubMed ID: 36265080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal dichalcogenide-based materials for rechargeable aluminum-ion batteries: A mini-review.
    Nandi S; Pumera M
    ChemSusChem; 2024 May; 17(9):e202301434. PubMed ID: 38212248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research Advances of Cathode Materials for Rechargeable Aluminum Batteries.
    Gao Y; Zhang D; Zhang S; Li L
    Chem Rec; 2024 Sep; 24(9):e202400085. PubMed ID: 39148161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical intercalation of anions into graphite: Fundamental aspects, material synthesis, and application to the cathode of dual-ion batteries.
    Matsuo Y; Inoo A; Inamoto J
    ChemistryOpen; 2024 Aug; 13(8):e202300244. PubMed ID: 38426688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries.
    Zhang K; Lee TH; Bubach B; Jang HW; Ostadhassan M; Choi JW; Shokouhimehr M
    Sci Rep; 2019 Sep; 9(1):13665. PubMed ID: 31541195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The staging mechanism of AlCl
    Bhauriyal P; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Adaptive Re-Organization Enables Polythiophene as an Extraordinary Cathode Material for Aluminum-Ion Batteries with a Cycle Life of 100 000 Cycles.
    Zhang J; Wu Y; Liu M; Huang L; Li Y; Wu Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202215408. PubMed ID: 36515631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li
    Jiang J; Li H; Huang J; Li K; Zeng J; Yang Y; Li J; Wang Y; Wang J; Zhao J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28486-28494. PubMed ID: 28770985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl-Symmetrically Substituted Poly(3,4-Dimethylthiophene) as Cathode for Aluminum Ion Batteries.
    Li S; Wang J; Zhou M; Jiang K; Wang K
    Chemistry; 2024 Mar; 30(18):e202303892. PubMed ID: 38279783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS
    Hu Y; Luo B; Ye D; Zhu X; Lyu M; Wang L
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.